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Dielectric spectroscopy of ionic microgel
suspensions

P. S. Mohanty,ab S. Nöjd,a M. J. Bergman,a G. Nägele,cde S. Arrese-Igor,f A. Alegria,fg

R. Roa,h P. Schurtenbergera and J. K. G. Dhont*cde

The determination of the net charge and size of microgel particles as a function of their concentration,

as well as the degree of association of ions to the microgel backbone, has been pursued in earlier

studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle

interactions that interfere with the characterization of single-particle properties. Here we introduce

dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The

advantage of dielectric spectroscopy over other experimental methods is that the polarization due to

mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart

from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-

co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated

relaxation modes, which are due to the polarization of the mobile charges within the microgel particles,

the diffuse double layer around the particles, and the polymer backbone. Expressions for the full

frequency dependence of the electrode-polarization contribution to the measured dielectric response are

derived, and a theory is proposed for the polarization resulting from the mobile charges within the

microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net

charge and the size of the microgel particles are found to be strongly varying with concentration. A very

small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of

chemical association of protons to the polymer backbone.

1 Introduction

Thermosensitive microgel particles are of fundamental and

technological interest because of their unique response to

various external parameters like temperature, ionic strength,

pH, and electric fields, as well as their behaviour at high

concentrations due to their soft interactions, deformability, and

their ability to partially interpenetrate and to host small mole-

cular species (many aspects of microgel systems are discussed,

for example, in ref. 1–3). Microgel particles are thus foreseen to

have a multitude of applications such as tunable micro-reactors,

catalysts, drug-delivery vehicles, and functionalized colloids.

In the present paper we focus on the response of such thermo-

sensitive microgel particles to electric fields, which is impor-

tant for their characterization and the prediction of structure

formation under the action of an external electric field. We

assess the possibilities of dielectric spectroscopy as a method

to determine the net charge and size of microgel particles as a

function of concentration, as well as the degree of association

of protons to the polymer network. The advantage of dielectric

spectroscopy over other methods is that the dielectric response

due to polarization of mobile ions within the microgel particles

is only indirectly affected by inter-particle interactions through,

for example, shrinkage, pH changes, and electric fields generated

by surrounding particles. Even at high concentrations, this

polarization mode gives information about the state of single

particles, without the direct interference of inter-particle inter-

actions like in scattering and microscopy experiments. The

electric-field induced polarization is at the origin their experi-

mentally observed assembly into strings and several crystalline

structures.4–6 A quantitative understanding of such field-induced

transitions requires a theory for the field-induced charge
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distribution in- and around the microgel particles, which may

be validated by means of dielectric spectroscopy. Dielectric

spectroscopy can also be employed, for example, to study filtra-

tion processes of microgel suspensions, which is often used for

their purification and removal of solvent. Knowledge of the

electric response of these particles may be employed to study

the temporal evolution of concentration profiles during filtration,

as proposed in ref. 7, andmay serve as an experimental technique

to test models for microgel filtration.8 As the electric polarization

is highly sensitive to interpenetration, dielectric spectroscopy is a

method to probe whether interpenetration occurs.

There are a limited number of experimental dielectric

spectroscopy studies on dispersions of ionic microgel particles.

Two dielectric relaxation modes are found in ref. 9 for various

types of ionic PNIPAM microgels, which are attributed to relaxa-

tion mechanisms of the counter ions residing within the diffuse

electric double layer outside the microgel matrix. Polarization

due to mobile charges inside the microgel particles as a possible

source for the observed dielectric relaxation has not been con-

sidered in this study. Dielectric spectroscopy has been used in

ref. 10 and 11 to probe the coil–globule transition in PNIPAM

microgel particles. In the swollen coiled state, dielectric spectra of

the microgel particle suspensions are reported to resemble that

of pure water. An additional relaxation process appears on

collapse of the microgel particles to globules, which is attributed

to the impermeability of the collapsed microgel for ions. This

work has been extended in ref. 12 to very high frequencies, in

the GHz range, where the water relaxation process within the

microgel is probed. The non-Debye–Maxwell like relaxation of

the water-orientational mode in the collapsed globular state is

assumed to be due to hydrogen bonding of water with the

polymer network, thus revealing in part the mechanism through

which collapse occurs. At similar high frequencies, two relaxation

processes have been observed in ref. 13, which are attributed to

the reorientation of dipoles of the PNIPAM chains at 1 MHz and

of solvent molecules at 10 GHz. Various solvents have been used

to assess the importance of hydrogen bonding. Experiments on

spherical polyelectrolyte brushes, which behave in many respects

quite differently from thermosensitive gels, reveal a pronounced

dielectric response at low frequencies, in the few tens of kHz

range.14 This mode is due to polarization resulting from mobile

charges within the brush, while the presence of the polymer

network is held responsible for a reduced mobility of ions. In

addition to microgel particles with a relatively homogeneous

polymer network density, also particles with an inherently

inhomogeneous network (PNIPAM/PAA SIPN microgels) have

been studied by means of dielectric spectroscopy.15 The inhomo-

geneous network is composed of two interpenetrating networks,

one of which is micro-phase separated into small compact

domains. For the homogeneous particles a single relaxation

mode is reported, while two relaxation modes are found for the

inhomogeneous particles.

There are no electro-kinetic theories leading to explicit

expressions for the polarization of ionic microgel particles in AC

electric fields, including the polarization due to mobile ions within

the gel matrix. The potential distribution and electrophoretic

mobility of soft particles consisting of a charged polymer net-

work and a core that is impenetrable for the ions are analyzed

in detail in ref. 16 and 17. This work is limited to a DC electric

field, and is therefore not applicable for the interpretation of

dielectric spectra.

There is thus quite some uncertainty about the origin of the

frequency dependent electric polarization modes of ionic microgel

particles at low and intermediate frequencies. It is not known yet

how to extract the net charge and size of microgel particles as a

function of concentration from dielectric spectroscopy data. In

addition, the correction of dielectric spectra for electrode polariza-

tion is often based on empirical approaches, and renders the

interpretation of spectra for low frequencies uncertain. The aim of

the present paper is therefore (i) to derive expressions for the

polarization due to mobile charges within the microgel particles

and for the full frequency dependence of the electrode-polarization

contribution to dielectric spectra, (ii) to identify the various

microgel relaxationmodes that contribute to experimental spectra,

and (iii) to extract the net charge and size of the particles as

a function of their concentration, as well as the degree of

dissociation/association of protons to the gel matrix. The deter-

mination of the net charge and size, and the degree of associa-

tion, are quantities that are difficult to obtain from scattering and

rheology experiments at higher concentrations, as inter-particle

interactions have a strong effect on such experimental data. The

polarization of mobile charges within the microgel particles, on

the contrary, is only weakly affected by inter-particle interactions

to within linear response to the external electric field.

This paper is structured as follows. A theory concerning the

contribution of electrode polarization to experimental dielectric

spectra is developed in Section 2. Section 3 discusses the polar-

ization of microgel particles: a theory for the polarization due to

mobile charges within the microgel matrix is given in Section 3.1,

while the polarization of the electric double layer outside the

microgel is discussed in Section 3.2 on the basis of a cell model,

that accounts for the concentration dependent Debye length and

the particle size and charge. The synthesis and characterization

of the PNIPAM particles, as well as the dielectric spectroscopy

equipment are introduced in Section 4. Experimental dielectric

spectra at various microgel particle concentrations are presented

in Section 5. The spectra are corrected for electrode polarization

on the basis of the theory as developed in Section 2, while the

remaining modes arising from the microgel particles are inter-

preted on the basis of the theories discussed in Section 3. The

concentration dependence of the net charge and size of the

microgel particles is extracted from the experiments, using

the theories for electrode polarization and for the amplitude

and characteristic frequency of the mode corresponding to

polarization due to mobile charges within the microgel.

2 Electrode polarization

The apparent dielectric constant of the medium in which the

microgel colloids are embedded (water plus possibly added

ions) as measured by dielectric spectroscopy is relatively large
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at low frequencies due to the formation of electric double layers at

the electrodes, even for the low ionic strength and the relatively

large gap width of the dielectric cell. The apparent storage-

permittivity diverges at zero frequency, as the charge that is

applied to the electrodes by external means is fully compensated

by the electric double layers. As a result of this charge compensa-

tion, the electric field strength for a DC experiment within the bulk

of themedium, away from the double layers, is zero. The frequency

dependent formation of double layers near the electrodes

is commonly referred to ‘‘electrode polarization’’ (although

‘‘electrode de-polarization’’ would possibly be more accurate), or

some times as ‘‘Maxwell–Wagner–Sillars interfacial polarization’’.

Dielectric measurements on suspensions of charged colloids are

obviously affected by electrode polarization, andmust be corrected

to obtain reliable data corresponding to the polarization of the

colloids themselves. There is a long history of attempts to describe

the frequency dependence of the apparent dielectric constant as

probed by dielectric spectroscopy due to electrode polarization (or

more generally, ‘‘. . . the AC behaviour of solid or liquid materials

containing charge carriers which can move freely within the

material but can not leave it through the electrodes’’18). Historical

overviews can be found, for example, in ref. 19 and 20 (see their

Section 2.1). The first attempts to describe electrode polarization

(as well as developing theories for conductivity of semi-conductors)

date back more than a century ago with the work of, for example,

Wien,21 Warburg,22 Jaffé,23,24 and MacDonald18 (ref. 21–23 are

written in German). More recent theories and experiments have

been reported in ref. 20 and 25–28, with results that are

partially at odds with each other, and where explicit results

for the storage- and loss-permittivity are given only for small

frequencies where o { Dk2 (with o the angular frequency,

D the ion diffusion coefficient and k�1 the Debye length). So far

there are no explicit, real-valued expressions reported for the

apparent loss- and storage-permittivities for arbitrary frequencies,

which would allow a straightforward correction for electrode

polarization. As will be seen later, it is essential to correct

experimental data for the low ionic strengths used in the

present study also for frequencies of the order of, and higher

than Dk2. This requires expressions for the apparent dielectric

constant that are valid also for higher frequencies than Dk2.

An empirical electrode-polarization correction method that

is sometimes used, is to fit the lower frequency contribution to

experimental dielectric spectra to a form Ao�a, where o is the

frequency, and A and a are fitting parameters (see, for example,

ref. 29 and 30). Extensive discussions of this empirical method

can be found in ref. 31 and 32. Here we wish not to rely on an

empirical approach for the description of electrode polarization,

but will derive explicit expressions for the full frequency depen-

dence from standard electro-kinetic equations.

In this section we discuss a theory for electrode polarization,

based on the same standard electro-kinetic equations considered

in the above mentioned recent literature, and assuming ideal

electrodes which are accounted for by a no-flux boundary condi-

tion. Explicit expressions are derived for the apparent dielectric

constants resulting from electrode polarization for arbitrary

frequencies, which are compared to earlier reported expressions

in the literature mentioned above. Furthermore, the theory is

tested in Appendix C by measurements of the apparent dielectric

constant of salt solutions at various concentrations, similar to

what has been done in ref. 20, 24 and 26.

Consider a monovalent 1–1 salt solution confined between

two flat electrodes which are separated by a distance L. A

spatially homogeneous alternating electric field Eext = E0 cos{ot}

in the z-direction is applied from the outside to the electrodes,

where E0 is the field amplitude and o the angular frequency.

Within the overdamped limit, where the contribution of inertial

forces can be neglected, the velocity of a uni-valent positively

charged ion is equal to v+ = F/x where F is the total (non-inertial)

force on the ion and x is the friction coefficient of the (solvated) ion

with the surrounding solvent. The force along the z-direction on a

positive ion consists of two parts, (i) the electric force�eqF/qz, with

e 4 0 the elementary charge and F the total potential, including

the potential set up by the spatial distribution of ions and the

field due to the externally applied charge to the electrodes, and

(ii) the Brownian force �kBTq ln r+/qz, with kB Boltzmann’s

constant, T the temperature, and r+ the number concentration

of positive ions. This leads to the well-known equation for the

ion flux j+ = r+v+,

jþ ¼ �rþD be
@

@z
Fþ @

@z
lnrþ

� �

;

where D = kBT/x is the diffusion coefficient, and b = 1/kBT. The

equation of motion for r+ thus reads,

@rþ
@t

¼ � @

@z
jþ

¼ D be
@

@z
rþ

@

@z
F

� �

þ @2

@z2
rþ

� �

:

(1)

Note that electro-osmotic flow is absent for the two-plate geometry

under consideration, so that a convective contribution to the flux

need not be considered. To within linear response and within the

Debye–Hückel approach, we have r+ rF E crF, where c is the

neutral salt concentration outside the double layers, away from

the electrodes. The local charge density r is equal to er+ � er�,

with r� the number density of negative ions. Assuming not too

different values for the diffusion coefficients of the negative and

positive ions, so that a common average diffusion coefficient can

be employed, the combination of eqn (1) with the analogous

equation for r� leads to the following equation of motion for the

charge density,

@r

@t
¼ D 2be2c

@2

@z2
Fþ @2

@z2
r

� �

:

With the Poisson equation,

@2

@z2
F ¼ �r

es
; (2)

where es is the dielectric constant of the solvent (pure water in

our case), it follows that,

@r

@t
¼ D

@2

@z2
� k2

� �

r; (3)
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with,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2be2c=es

q

; (4)

the inverse Debye length. This equation of motion has been put

forward for the first time in the early developments of poly-

electrolyte theory33 and to describe the frequency dependence of

the capacity of a diffuse double layer.34 The boundary conditions

to the equations of motion (2) and (3) are,

@

@z
rþ esk

2 @

@z
F ¼ 0; for z ¼ �1

2
L;

F z ¼ 1

2
L

� �

� F z ¼ �1

2
L

� �

¼ �E0 cosfotgL;
(5)

with L the distance between the electrodes. Note that z = 0

is chosen to be at the mid plane between the two electrodes.

The first boundary condition ensures that there are no ion-

fluxes through the electrodes, while the second boundary

condition expresses that a voltage �E0L cos{ot} is imposed to

the electrodes.

The set of eqn (2)–(5) is solved in Appendix A, which leads to

explicit expressions for the measured, apparent dielectric con-

stants emed
0 = es + eep

0 and emed
00 = eep

00 for a medium consisting

of a pure solvent with dielectric constant es and the electrode-

polarization contributions eep due to the presence of the 1–1 ions.

For kL c 1, the additive contributions due to electrode polariza-

tion are found to be equal to,

eep
0

es
¼ 2f ðLÞ

4� 4OgðLÞ þ O2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L2
p kL;

eep
0 0

es
¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L2
p

� 2gðLÞ
4� 4OgðLÞ þ O2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L2
p kL;

(6)

with,

f ðLÞ ¼ 1
ffiffiffi

2
p 1þ 1þ L2

	 
1=2
h i1=2

;

gðLÞ ¼ 1
ffiffiffi

2
p �1þ 1þ L2

	 
1=2
h i1=2

:

(7)

The two dimensionless frequencies L and O are defined as,

L ¼ o

Dk2
;

O ¼ kLL ¼ oL

Dk
:

(8)

Notice that eep
0 does not diverge at zero frequency as it should.

As discussed in ref. 20 (and in Appendix A), this is due to failure

of the linearized electro-kinetic theory at small frequencies. For

such lower frequencies, an increasing external charge must be

applied to the electrodes in order to keep the potential fixed,

as more polarization charges compensate the external charge.

At some point the externally applied charge is so large that

linearization of the electro-kinetic equations is no longer valid.

The above expressions for the dielectric constants can therefore

only be used for sufficiently large frequencies, where electrode

polarization is not too strong. Typically, the difference of

the potential at the electrodes and the potential just outside

the double layer that forms at the electrodes should be

less than about 50 mV. As we will see in the experimental

Section 5.2, the failure of the linearized theory prohibits the

determination of the spectral amplitude corresponding to the

polarization due to charges within the microgel at high volume

fractions.

In case L { 1 (that is, o { Dk2), the above results for the

dielectric constants reduce to,

eep
0

es
¼

1þ 1

2
kLL2

1þ 1

2
kL

� �2

L2

1

2
kL;

eep
0 0

es
¼

1

2
kLL

1þ 1

2
kL

� �2

L2

1

2
kL:

(9)

These asymptotic forms for low frequencies agree with those in

eqn (29) and (30) in ref. 20 (note the connection sN- Dk2es,

s(o)- oeep
00, and b ! 1

2
kL between the notation in ref. 20 and

our notation), as well as those in eqn (2) and (3) in ref. 28

(with the same notation as in ref. 20, except that h ! 1

2
L).

The expression (9) for the loss-permittivity also agrees with

that found in eqn (48) in ref. 26, while that for the storage-

permittivity in slightly different (the term
1

2
kLL2 in the numerator

of eqn (9) for eep
0/es is missing in ref. 26). The above expres-

sions are at odds with those for the ‘‘blocking electrodes’’ in

eqn (9) in ref. 27 (note the connection d - L, L - k�1,

M ! 1

2
kL, and O - L between the notation in ref. 27 and

our notation).

In the analysis of experimental dielectric data on suspen-

sions of charged colloids, the dimensionless frequency L is not

always small, so that the full expressions in eqn (6) must be

used. These expressions have not been reported explicitly in

literature before. Limiting expressions for the dielectric constant

for small values of L are also derived in ref. 26, accounting in

addition for the difference in the diffusion coefficients of both

ion species. As shown in ref. 20, experiments on salt solutions

with ion species with significantly different diffusion coeffi-

cients can be accurately described by the theory for frequencies

for which L { 1 when a ‘‘mean diffusion coefficient’’ is

introduced.

Electrode polarization is affected by the presence of micro-

gel particles, which enhances the ion concentrations stemming

from their counterions. Section 5.1 quantifies these additional

contributions to electrode polarization, which results in a

method to obtain the net charge of the colloids. Electrode

polarization is thus turned into a benefit for the characteriza-

tion of microgel particles, instead of a phenomenon that is just

an inconvenience that interferes with the determination of the

dielectric properties of colloidal particles.
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3 The polarizability of microgel
particles

In the theory presented below we neglect the field-induced

exchange of ions between the microgel and the surrounding

solution. This is a reasonable approximation when there is a

strong association of the mobile ions (H+-ions in our case) to

the PNIPAM polymer backbone and/or when there is a con-

siderable degree of Manning ion-condensation, although some

leakage of ions will still occur.

To within linear response to the external field, and with the

neglect of leakage, the induced dipole moment is a linear

superposition of the polarization resulting from motion of

charges within the microgel particles, and those residing within

the double layer outside the microgel. Analytical expressions for

the contribution to the dielectric constant due to polarization

stemming from the mobile ions within the microgel particle are

derived in Section 3.1. Since there are no analytical results for

the frequency dependent polarization of electric double layers,

we use an existing cell model which describes, within a semi-

quantitative accuracy, the polarization of possibly overlapping

diffuse double layers at higher concentrations of microgel particles.

This cell model will be discussed in Section 3.2.

3.1 Polarization due to charges within the microgel particle

The same electro-kinetic equations as used for the analysis of

electrode polarization can be employed to describe the polar-

ization of ions that are confined within the microgel particle.

The description given below is coarse grained over distances of

the order of the mesh-size of the microgel polymer network.

The charge density, for example, is the average charge density

within a volume element that contains many meshes of the

polymer network. The inhomogeneous polymer density within

a microgel particle can, in first approximation, be described

through a core–shell structure, where the core is impenetrable

for ions.35 Extending the calculations given below to include

such a core, however, shows that the effect of the core on

polarization is negligible, even for core diameters up to about

50% of the diameter of the microgel particle. We will therefore

limit the discussion below to a quasi-homogeneous polymer

network, which considerably simplifies the mathematics.

Since the polarization of a microgel particle requires dis-

placements of H+-ions over distances of the order of many

meshsizes, ion transport is captured by a single, long-time

diffusion coefficient that describes the motion of ions from

one mesh to another. This diffusion coefficient involves the

integration of complicated transport processes on very small

length scales, like the parallel and perpendicular diffusion of

an ion in the vicinity of a polymer strand, and the motion of an ion

in the vicinity of a charge on the polymer backbone. Expressing the

mesh-to-mesh diffusion coefficient in terms of these microscopic

processes is a highly non-trivial problem in itself, which is beyond

the scope of the present paper.

Let rgel denote the number density of charges covalently

bounded to the polymer backbone, within the same coarse-

grained description as mentioned above. Note that �ergel is the

bare backbone charge density upon full dissociation, that is,

it includes all negative charges on the backbone, irrespective of

the degree of H+-bonding to the PNIPAM network. The above

discussed approximation of a quasi-homogeneous network

amounts to the neglect of r2rgel against r2r+, with r+ the

coarse-grained number density of H+-ions, including ions that

are dissociated from the network and those that are associated.

It is thus assumed that the inhomogeneity of the charge distribu-

tion of the mobile ions due to polarization is much more

pronounced than the inhomogeneity of the fully charged polymer

backbone. Such an approximation can not be made for star-like

polymer brushes, which are inherently inhomogeneous both in

polymer density and charge distribution.36 The theory presented

below can, however, be extended to deal also with strongly

inhomogeneous network densities (like those described in

ref. 9). An analytical treatment is probably not feasible for these

cases, so that polarizabilities have to be evaluated numerically,

which has not been pursued so far.

The electric fields experienced by mobile ions within a

microgel particle due to the surrounding particles (in the

absence of the external field) may have an effect on the internal

charge distribution within the gel matrix of a given particle.

Since the Debye length (certainly at higher concentrations) is

smaller than the radius of the microgel particles, and each

particle is on average symmetrically surrounded by neighboring

particles, the electric potential of the neighboring particles

will be a smooth function of position within the main part of

the microgel matrix. We will therefore neglect here the possi-

bility of an inhomogeneous charge distribution resulting from

inter-particle interactions. Taking such inter-particle polariza-

tion effects into account would certainly require a numerical

approach.

A principle difference with the mathematical framework to

describe electrode polarization is that on the right hand-side

of eqn (3) there is now an additional convective contribution

�r�(vsr+) to the flux of H+-ions, where vs is the local electro-

osmotic flow velocity (the index ‘‘s’’ stands for solvent).

However, to within linear response to the external electric field

and for the homogeneous polymer network under considera-

tion, bi-linear products of r, C, vs, and E0 can be neglected, as

all these variables are linear in the external-field amplitude

(where r is the charge density, C is the potential that arises

from the polarization charges, and E0 is the amplitude of the

external field). The convective contribution is such a bi-linear

product. For the description of polarization of the double layer

outside the microgel particle, the convective contribution can

not be neglected, as the charge distribution within the double

layer is inhomogeneous also without the external electric field.

This renders the convective contribution within the diffuse

double layer of first order in the external field strength. In that

case the electro-kinetic equations couple to the Navier–Stokes

equation that describes the solvent flow. Such a coupling is

absent for the polarization resulting from mobile ions inside a

homogeneous microgel, which renders an analytical treatment

feasible. A second difference as compared to the electrode-

polarization problem is that the immobile microgel backbone
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is charged, and thus contributes to the total charge density. The

total charge density is now equal to,

r = e[r+ � rgel], (10)

where, as before, rgel is the number concentration of the

immobile negative charges on the network when all H+-ions

are dissociated from the polymer backbone, which thus corre-

sponds to the titration charge of the microgel particles, while

r+ is the H+-ion number concentration including those ions

that are temporarily associated to the network. The temporarily

bound protons are on average mobile, but with a reducedmobility

depending on the fraction of the time the protons spend in the

associated and dissociated states.

Since within the Debye–Hückel approximation and within

linear response, bi-linear products of r, C, E0, and vs can be

neglected in the electro-kinetic equation for r+, and assuming

that |r2r+| c |r2rgel|, as discussed above, we are thus lead to

the same electro-kinetic eqn (2) and (3) for the charge density

(10) as for electrode polarization, but now in three dimensions,

r2C ¼ � r

es
;

@r

@t
¼ Dþ r2 � k2

	 


r;

(11)

where, similar to eqn (4) (except for a factor of 2 within the

square root, since only one of the charged components is now

mobile),

kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

be2cin=es

q

; (12)

with cin the uniform number concentration of protons in the

absence of the external field, including the dissociated and

temporarily associated protons: kin
�1 will be referred to as the

‘‘bare inner-screening length’’. Furthermore, D+ is the diffusion

coefficient of H+-ions within the microgel matrix, again aver-

aged over many meshes of the polymer network. This diffusion

coefficient is proportional to the fraction of time that an ion

spends in solution. When the ion is associated to the network

its diffusion coefficient is temporarily zero, while when it is in a

dissociated state its diffusion coefficient is approximately equal

to that of a freely diffusing ion. The diffusion coefficient is thus

approximately equal to the fraction of time it spends in the

dissociated state multiplied by the free diffusion coefficient. As

will be seen in the experimental section, there is a considerable

reduction of D+ as compared to the free diffusion coefficient of

a proton in water due to a strong association of H+-ions to the

polymer backbone. This justifies a no-flux boundary condition

at the periphery of the microgel particle,

n̂�{rr � eskin
2[E0 cos{ot} � rC]} = 0, r A qVgel, (13)

whereC is the potential due to polarization charges, qVgel is the

spherical boundary of the microgel particle, and n̂ is the unit

normal vector to the boundary.

Note that cin is equal to the titration charge (the charge

of the polymer backbone upon full dissociation of H+-ions)

of a single microgel particle divided by its volume. As will be

seen later, there is a large fraction of protons that is temporarily

associated to the polymer backbone. The true Debye length

within the gel matrix is therefore much larger than the bare

inner-screening length, as will be discussed in Section 5.2.

The above electro-kinetic equations can be solved analyti-

cally (see Appendix B), leading to the following expressions for

the additive increase of the dielectric constants due to polariza-

tion of the inner part of the microgel particles (the index ‘‘in’’

stands for ‘‘inside’’),

ein
0

es
¼ 9

2
jgel

o0
2

o2 þ o0
2
;

ein
0 0

es
¼ 9

2
jgel

oo0

o2 þ o0
2
;

(14)

where jgel = (4p/3)cgelag
3 is the volume fraction of microgel

particles (with cgel the number concentration of microgel

particles, and ag their radius), and where the characteristic

frequency is equal to,

o0 ¼
1

3
Dþkin

2: (15)

The characteristic frequency is the frequency beyond which the

polarization diminishes due to the finite mobility of the ions.

As will be seen in the experimental section, this expression

for the characteristic frequency allows for the determination of

the particle radius as a function of concentration, through the

change of the concentration cin with the size-change of the

particles.

The same electro-kinetic equations used above can also be

employed to describe the dielectric response of highly inhomo-

geneous networks (like the PNIPAM/PAA SIPN microgels15), and

possibly include a boundary condition that allows for exchange

of ions between the gel matrix and the solution. This can most

probably only be done numerically.

3.2 Polarization of the diffuse double layer outside the

microgel particle

For an isolated charged colloidal particle, three types of polarization-

relaxationmechanisms related to the response of the electric double

layer can be distinguished:

(i) The first relaxation process is due to accumulation of ions

on either side of the impenetrable colloidal core, as a result of ion

fluxes induced by the electric field. When such field-induced

ionic charges aremainly due to normal fluxes from the electrolyte

solution to the surface, the dipole points in the opposite direction

of the external electric field. This is in particular the case for

uncharged colloids in a salt solution.37,38 On the contrary, if ion

fluxes that are tangential to the colloidal surface are dominant,

the induced dipole points in the same direction as the external

electric field.39,40 The corresponding relaxation mechanism

is commonly referred to as ‘‘concentration polarization’’,

‘‘a-relaxation’’, or ‘‘volume diffusion’’. The characteristic fre-

quencies for this mode can be estimated as follows.41,42 The

relaxation of the dipole moment requires ions to diffuse from

one side of the core to the other side, which corresponds to a
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distance pag, where ag is the radius of a particle. The time

required to diffuse over that distance is (pag)
2/D, where, as

before, D is the ion-diffusion coefficient. The corresponding

characteristic frequency o0,cp = 2p/t is thus of the order,

o0,cp E 4D/(pag
2). (16)

(ii) The remaining double-layer polarization mechanism is

simply the electric-field induced distortion of the charge dis-

tribution within the double layer, other than that caused by

concentration polarization. This includes double-layer defor-

mation due to the electrophoretic motion of the colloid.43 The

ions are now locally, on each side of the colloid, displaced over

distances comparable to the Debye length. The corresponding

relaxation frequency for this ‘‘ion-migration relaxation process’’

is thus of the order,

o0,im E 4pDk2,

where ‘‘im’’ stands for ‘‘ion migration’’.

(iii) A third mechanism that is generally present is due to

motion of charges along the surface of the colloid in case there

is a mismatch in conductivity of the pure solvent (without ions)

and the colloidal core. This so-called Maxwell–Wagner polar-

ization44 does not play a role for the microgel particles. For very

thin double layers, the above polarization mechanisms (i) and

(ii) can be lumped into an effective surface conductivity. The

resulting single relaxation mode is commonly referred to as the

Maxwell–Wagner–O’Konski relaxation mode.45

An overview of the various polarization mechanisms for solid

particles, as well as an introduction to dielectric spectroscopy,

can be found in ref. 46.

Some of the experiments are performed at concentrations

where the diffuse double layers overlap. We employ a cell model

to describe their polarization. A cell model is developed in

ref. 36 for a star-like polymer brush, and in ref. 47 for soft

particles consisting of a core, impenetrable for ions, and a

polymer shell. The latter of these cell models is relevant for the

present work. It is found in ref. 47 that the numerical values for

the dielectric response of soft and solid particles with the same

charge (within the polymer network and on the particle surface,

respectively) are typically a factor of two different, depending

on the hydrodynamic penetration depth of the polymer net-

work (the parameter 1/l in ref. 47), which for PNIPAM networks

is typically in the nanometer range.17 These differences apply

to small values of the dielectric constant of the core-material

of the particles, typically 2–5e0, embedded in water (with a

dielectric constant equal to 78e0). Since the microgel particles

contain a considerable fraction of water, the dielectric constant

of their core material is much larger than such low values.

For such much larger values of the dielectric constant of the

core material, the difference in dielectric response between

soft and solid particles is much less than the typical factor of

two mentioned above. Furthermore, cell models are semi-

quantitative (see, for example, ref. 48). It is therefore reasonable

to use a cell model for solid particles to qualitatively describe

the behaviour of soft particles. Such cell-model calculations

are sufficiently discriminate to conclude that one of the

experimentally found relaxation modes is due to the polariza-

tion of the diffuse double layer.

Our theoretical calculations are based on the cell model

presented in ref. 49. In this approach, a representative spherical

cell of radius b containing one spherical colloidal particle of

radius a in its center is considered instead of the whole system.

The cell radius b is such that the particle/cell volume ratio is

equal to the particle volume fraction of the suspension, that is,

jgel = (a/b)3. The standard boundary conditions at the particle’s

surface impose continuity of the electric potential, the dis-

continuity of the normal component of the electric field

strength due to the surface-charge density (the dielectric con-

stants of the solvent and the particle are taken equal, as

discussed above), impenetrability of ions to the solid surface,

and non-slip for the fluid flow. Hydrodynamic and electrical

interactions between particles are modeled through boundary

conditions at the cell outer boundary. On the outer surface of

the cell, we use Kuwabara and Shilov–Zharkikh–Borkovskaya

boundary conditions. The Kuwabara boundary condition50 for

the fluid flow states that the radial component of the flow

velocity v at the cell boundary is equal, but opposite in sign, to

that of the electrophoretic velocity ve of the particle (with n̂ the

unit normal to the cell boundary),

v(r)�n̂|r=b = �ve�n̂,

while the fluid flow is free of vorticity at the outer cell boundary,

r � v(r)|r=b = 0.

The Shilov–Zharkikh–Borkovskaya boundary conditions51 state

that the difference between the equilibrium electric potentialC0,

without the external field, and the out-of-equilibrium potential is

equal to the radial component of the macroscopic electric field

hEi at the outer cell boundary,

C0(r)|r=b � C(r,t)|r=b = hEi�r|r=b,

while the ionic concentration ni of species i is not affected by

the external field at the cell boundary,

ni(r,t)|r=b = n0,i(r,t)|r=b,

with n0,i the concentration in the absence of the external field.

More details on this cell model can be found in ref. 49 and 52.

Recently, the present cell model has been used to describe

dielectric spectroscopy measurements of concentrated colloidal

suspensions of polystyrene latex beads suspended in KCl

solutions.48 The same cell model is discussed in ref. 53 for a

DC electric field. The accuracy of cell-model predictions is rather

limited, especially at very high volume fractions.

For the small net charge of the microgel particles and a

Debye length of pure water, the above cell model predicts a

single relaxation process corresponding to the double-layer

polarization for all concentrations of microgel particles, to within

numerical accuracy. The characteristic frequency of this mode

complies with the frequency in eqn (16) for the concentration-

polarization mode. The amplitude for the storage-permittivity is

obtained as the difference between the zero-frequency and high-

frequency values of the real part of the dielectric constant, while
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the characteristic frequency is obtained from the maximum slope

of the dielectric constant as a function of frequency.

4 Particle synthesis and methods

Here we describe the synthesis and characterization of the ionic

microgel particles, and the dielectric spectroscopy equipment.

4.1 Synthesis and characterization of the PNIPAM-co-AA

[poly(N-isopropylacrylamide-co-acrylic acid)] microgel particles

Negatively charged PNIPAM particles were synthesised by free-

radical precipitation polymerization of 1.43 g re-crystallized

N-isopropylacrylamide, NIPAM, where the remaining compo-

nents in the reaction mixture in a round-bottom flask consist

of 0.003 g sodium dodecyl sulfate as a pre-cursor stabiliser,

0.113 g of the cross-linker N,N0-methylenebis(acrylamide),

0.002 g polyfluor 570 methacryloxyethyl thiocarbonyl rhod-

amine B that was pre-dissolved in 10 ml water, and 0.08 g

acrylic acid (99.5%) also pre-dissolved in 10 ml water. The

reaction mixture was bubbled with argon for 20 min and

thereafter kept under an argon atmosphere for the remaining

time of the procedure. The reaction mixture was heated to 70 1C

and 0.036 g potassium persulfate pre-dissolved in 5 g water was

added to initiate the reaction. After four hours the reaction

mixture was removed from the heater and left to cool down over

night under constant stirring. The mixture was filtered and the

particles were further cleaned by repeated centrifugation and

redispersion steps. The purified particle solution was freeze

dried in order to prepare samples with a well-controlled weight

fraction of particles.

The hydrodynamic radius and the size polydispersity were

determined by a first order cumulant analysis of dynamic light

scattering (DLS) correlation functions using a modulated

3D cross-correlated instrument at a wavelength of 660 nm

(LS Instruments, Switzerland). Measurements were performed

at 20 1C over an angular range of 301 r y r 401. The thus

obtained hydrodynamic radius is equal to (578 � 15) nm, with a

size polydispersity as obtained from static light scattering of

7%. The a hydrodynamic radius is an intensity-weighted radius.

The number-averaged radius that corresponds to this radius

and polydispersity is (546 � 15) nm.

The standard Zimm-plot procedure to obtain the molecular

weight turned out to be quite inaccurate due to the large size

of the microgel particles. Instead, an accurate value for the

molecular weight can be obtained from confocal microscopy,

by counting the number of particles within a given volume. In

the confocal microscopy experiments, the number density of

particles was obtained from the number of particles found in

an analyzed volume using a Leica DMI6000 with a SP5 tandem

scanner in the resonant mode (Leica, Germany) at an excitation

wavelength of 543 nm. This was done for weight concentrations of

4.4 and 5.5 wt%. The molecular weight is found from measure-

ments within five different regions to be equal to 2.20 � 1010 and

2.11 � 1010 g mol�1, respectively, with an estimated error of

7%. A quite accurate value of (2.16 � 0.10) � 1010 g mol�1 for

the molecular weight is thus obtained from microscopy. This

molecular weight will be used to calculate number concentra-

tions from concentrations in wt%.

The total bare charge of the particles was determined using

conductometric titration (Probe Drum, Sweden, conductivity

probe from Radiometer analytical, France), where 0.1 wt%

particle solutions were fully de-protonated by addition of

NaOH. The conductivity was thereafter monitored as a function

of well-controlled additions of 0.1 M HCl. The obtained curves

showed three distinct regions.54,55 First, a drop in conductivity

due to the neutralization of excess NaOH. Second, the proto-

nation of particle charges is manifested by an almost constant

conductivity. Third, a linear rise in conductivity caused by the

excess of HCl. The three distinct regions allow to determine the

amount of HCl needed to neutralize the charges on the parti-

cles. The total charge per particle was thereafter calculated

based on the number of particles in the titrated sample volume,

using the molecular weight as determined from the number

density obtained directly with confocal microscopy together

with the number of protons present in the specific volume of

HCl needed to neutralize all particle charges in the titrated

sample volume. The total number of negatively charged groups

on the PNIPAM network of a single microgel particle was

accordingly determined to be (2.4 � 0.2) � 107. This is the

negative charge that a particle would obtain when it is fully

de-protonated.

4.2 Dielectric spectroscopy measurements

A Novocontrol high-resolution dielectric analyzer (Alpha-S) was

used to determine the complex dielectric permittivity over a

wide frequency range 1–107 Hz. The applied (root-mean-

squared) electric field strength is 155 V m�1. In the setup used,

for each frequency, the impedance of a reference capacitor was

compared with that of a parallel plate capacitor formed by two

gold-plated electrodes (11 mm diameter). The measured values

for the real and imaginary parts of the dielectric permittivity

were subsequently calculated from the in-phase and out-phase

sample cell capacitance. Measurements are performed at a

temperature of 20 1C. A fixed distance of 6.45 mm between

the flat electrodes was maintained by means a Teflon cylinder

of suitable size, which was filled with the liquid material under

investigation. The advantage of such a relatively large gap

width is that the contribution of electrode polarization to

measured dielectric spectra is diminished. The drawback is

that the applied electric field strength where a linearized

Poisson–Boltzmann approach to describe electrode polariza-

tion becomes invalid shifts to lower values, since for a given

electric field strength the applied voltage increases linearly with

the gap width.

As is well-known, the experimentally measured in-phase

dielectric constant (the storage-permittivity) eexp
0 and the out-

phase constant (the loss-permittivity) eexp
00 have a contribution

from conductivity (see also Appendix A),

eexp
0 = e0 � s00/o,

eexp
00 = e00 + s00/o, (17)
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where s0 and s00 are the in-phase and out-phase conductivities,

respectively. Within the frequency range probed in the present

study, s0 is constant equal to the zero-frequency conductivity s0,

while s00 = 0.

It is important to note that the apparent dielectric constant

due to electrode polarization is additive to the dielectric

contributions of the particles. The total, measured dielectric

constant is thus equal to,

eexp
0 = es

0 + eep
0 + epar

0,

eexp
00 = es

00 + eep
00 + epar

00 + s0/o,

where, as before, es is the dielectric constant of the pure solvent

(without the ions that lead to electrode polarization), eep is the

contribution from electrode polarization, and epar is the con-

tribution from the microgel particles. For frequencies less than

107 Hz, and using water as the solvent, we have es
0 = 78e0 (with

e0 the dielectric constant of vacuum) and es
00 = 0. It would be

a mistake to take the measured dielectric constant of the

medium without the particles emed = es + eep as a multiplicative,

effective solvent dielectric constant, and thus assume that

eexp B emed � epar. Dividing spectra of suspensions with the

spectra of the medium (including the ions that lead to electrode

polarization) gives rise to spectra with the expected leveling

off of the storage-permittivity at low frequencies (as electrode

polarization is dominant at these low frequencies), as well as a

pronounced peak in the loss-permittivity. Spectra obtained in

this way, however, have little to do with the true spectra arising

from polarization of the (microgel) particles, and give rise to a

quite false interpretation of experimental results.

5 Experimental results for the
storage-permittivity

A typical experimental result for the frequency dependence of

the storage-permittivity of a microgel dispersion in water is

given in Fig. 1. In all experiments discussed here, the distance

between the electrodes is 6.45 mm. Such a large gap width

reduces the effect of electrode polarization to an extent that a

meaningful determination of the contributions of the microgel

particles can be deduced. Apart from the electrode-polarization

contribution, there are three relaxation processes present: the

regimes I, II, and III indicated in Fig. 1. Electrode polarization

dominates in the low frequency regime IV. We therefore fitted

spectra as a sum of the electrode-polarization contribution,

using eqn (6)–(8), and a sum of three Debye–Maxwell contribu-

tions of the form Ãno0,n
2/(o0,n

2 + o2), with Ãn the amplitude

and o0,n the characteristic relaxation frequency of the corres-

ponding relaxation processes n = I, II or III of the microgel

particles. Since the relaxation times of the three processes are

well-separated, such a fit gives reliable values for both the ampli-

tudes and the relaxation frequencies for the three Debye–Maxwell

relaxation functions.

The inset in Fig. 1 shows that the relaxation spectra can not

be fitted with a sum of just two Debye–Maxwell contributions.

The green curve is a least-square fit to two modes with a fixed

base-line equal to that of pure water (which is 78e0), while the

blue curve is a fit with two modes where the base-line is a free

fitting parameter. Obviously, two Debye–Maxwell contributions

are not sufficient to describe the relaxation spectrum: the

minimal value of the sum of squared residuals for two modes

is more than ten times larger than for a fit to three modes

(the red line in the inset and in the main figure).

As discussed in the second part of Appendix C, the large

conductivity of salt solutions at low concentrations, as well as the

dominant electrode polarization contribution to the out-phase

measured dielectric response, renders the measurement of the

loss-permittivity unfeasible. We therefore restrict the discussion

to measurements of the storage-permittivity.

As the microgel particles enhance the ionic strength in the

vicinity of the electrodes, the Debye length is used as a fitting

parameter for the electrode-polarization contribution. The

solid black line through the data points in Fig. 1 represents

the fit result, while the dashed line is the contribution due

to electrode polarization. The solid red line in Fig. 1 is the

dielectric constant corrected for electrode polarization. Note

that the contribution due to electrode-polarization is important

up to frequencies where the slowest microgel particle relaxation

process already decays. It is thus essential to correct the data

Fig. 1 A typical dielectric spectrum of a microgel particle suspension (for
a concentration of 2.89 wt% and a gap width of 6.45 mm). The solid black
line through the data points corresponds to the fit described in the main
text, the dashed line is the contribution from electrode polarization, and
the solid red line is the dielectric spectrum originating from the microgel
particles. Various frequency ranges for polarization relaxation are indicated
by I, II, III, and IV, of which the physical origin is depicted in the cartoons:
range I = backbone polarization, range II = double-layer polarization, range
III = polarization due to H+-ions inside the gel, and range IV = electrode
polarization. The inset shows the result of least-square fits of the dielectric
spectrum after correction for electrode polarization. The red line is a fit to
three Debye–Maxwell modes (which is the same as in the main figure). The
green line is a fit to two Debye–Maxwell modes where the base-line is taken
equal to that of water (78e0), while for the blue line the base-line is a free
fitting parameter.
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for electrode polarization in order to extract meaningful results

for all three relaxation processes, even for the large gap width of

the dielectric sample cell that has been used.

Data for several microgel particle concentrations and the

corresponding fits are given in Fig. 2a. The contributions from

electrode polarization are given in Fig. 2b as dashed lines, and

the solid lines are the contributions from the microgel particles.

The same color code is used as in Fig. 2a to label the various

concentrations.

The amplitudes A = (e0/es) � Ã and characteristic frequencies

for the three Debye–Maxwell modes are plotted in Fig. 3 as a

function of the microgel particle concentration in terms of their

weight percentage. The amplitudes of all three modes vary

linearly with the microgel particle concentration at sufficiently

low concentrations, which shows that these modes are indeed

related to the polarization of the microgel particles.

In the following subsections we discuss the electrode-

polarization contributions to the measured dielectric constant

and the three microgel modes separately. The relaxation mode at

high frequencies is in the frequency range where uncharged

polymers are polarized, while the characteristic frequency of this

mode is independent of the concentration. This mode is there-

fore attributed to the polarization of the PNIPAM polymer back-

bone. The intermediate mode relaxes at frequencies that are

typical for double-layer polarization, with an amplitude that is in

agreement with the prediction from the cell model. This mode is

therefore attributed to double-layer polarization. The microgel-

particle mode at low frequencies occurs in a frequency range that

is well below the relaxation frequencies of double layers, with an

amplitude that is much larger than for double-layer polarization.

The amplitude is in accordance with the prediction for polariza-

tion due to mobile charges within the microgel. The slow mode

is thus attributed to polarization due to mobile charges within

the microgel. Both the well-separated relaxation frequencies as

well as the quite different values of the amplitudes thus allow the

unambiguous identification of the origin of the three relaxation

modes. These features will be discussed in detail for each of the

modes in the following subsections. The combined results from

electrode polarization and the slow mode are used to obtain the

concentration dependence of the radius and the net charge of

the microgel particles as a function of concentration.

Fig. 2 (a) Experimental results for the storage-permittivity for various
microgel concentrations: 0.094 (black), 0.465 (green), 0.94 (violet),
1.44 (blue), 1.95 (magenta), 2.89 (red), 4.39 (grey), and 5.50 wt% (orange).
The gap width is 6.45 mm. The solid lines are fits to the data, including the
contribution from electrode polarization. (b) The separate contributions
from electrode polarization (the dashed lines) and the contributions from
the microgel particles (the solid lines). The colors refer to the different
concentrations, as in (a).

Fig. 3 (a and b) The characteristic frequency and amplitude for the slow
relaxing mode, respectively, as a function of the microgel particle con-
centration. The black dashed-dotted lines are guides-to-the-eye. Open
symbols are used in (b) for data points that are unreliable due to failure of
the linear Poisson–Boltzmann theory used to correct for electrode polar-
ization. The blue lines in (b) correspond to the prediction in eqn (14): the
dashed curve neglects shrinkage of the radius with increasing volume
fraction, and the solid curve accounts for shrinkage. (c and d) The same for
the middle mode. The blue solid lines are predictions by the cell model.
The black, rotated triangle at zero concentration corresponds to the
estimate in eqn (16) for the concentration-polarization mode. (e and f)
The same as before, now for the fast mode. Note that the amplitudes are
equal to A = (e0/es) � Ã, where Ã is the amplitude corresponding to the
plots of e0/e0 in Fig. 1 and 2.
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5.1 The contribution from electrode polarization

The very steep increase at low frequencies (the frequency range IV

in Fig. 1) of the measured storage-permittivity with decreasing

frequency is due to electrode polarization. The Debye length is the

only fit parameter in eqn (6)–(8) for the contribution due to

electrode polarization. As discussed before, the thus obtained

apparent Debye length k�1 depends on the concentration of

microgel particles through the corresponding increase of the ion

concentration near the electrodes. The concentration dependence

of k�1 is plotted in Fig. 4a. The Debye length at zero concentration

is 210 � 10 nm, which is in accordance with the calculated Debye

length of 192 nm for water in atmospheric equilibrium with air

(see Appendix D). It should be noted that Debye lengths that differ

from those in the classic Debye–Hückel theory (where the ionic

strength is given by the salt concentration outside the double layer)

are introduced when describing interactions between charged

colloids due to overlapping double layers.56–60

The dependence of k�1 on the microgel particle concentration

can be obtained simply by adding the number of ions that result

from the addition of microgel particles to the total ionic strength.

The number of ions that are added to the solvent per microgel

particle is equal to Z = |Q|/e, with Q the net charge of a microgel

particle, while the available volume for the ions due to the presence

of the microgel particles is reduced by a factor 1 � jgel, where jgel

is the volume fraction ofmicrogel particles. The ionic strength 2c in

eqn (4) for the Debye length is thus increased due to the presence

of the microgel particles by an amount Zcgel/(1 � jgel), where cgel is

the number concentration of microgel particles, which is obtained

from the molecular weight (as determined from confocal micros-

copy (see Section 4.1)) in terms of the weight concentration as cgel
[microgel particles/m3] = 2.79 � 1017 � c [wt%]. The inverse Debye

length as measured by electrode polarization is thus equal to,

k ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4plBcgel

k02
Z

1� jgel

s

; (18)

where lB = be2/4pes = 0.74 nm is the Bjerrum length.

The quantity Z/(1 � jgel) obtained from the data in Fig. 4a is

plotted in Fig. 4b. From an extrapolation of Z/(1 � jgel) to zero

concentration (see the inset in that figure), the net charge is

found to be equal to Z = 390 � 100. As can be seen from this

figure, however, the net charge increases quite strongly above

weight fractions of about 2–3 wt%, quite independent of the

precise concentration dependence of the volume fraction jgel.

The variation of the net charge with weight concentration is given

in Fig. 4c, where the volume fraction dependence on the weight

concentration is taken from the analysis of the polarization mode

from charges inside the particles, as discussed in the next sub-

section. Even at these higher concentrations, however, the net

charge is always very small as compared to the total number of

dissociable groups (the titration charge, which was found in

Section 4.1 to be equal to 2.4 � 107 elementary charges). The

small net charge at low concentrations is in accordance with

the net charge of 190 as found in ref. 61 for similar microgel

particles, but with a smaller degree of cross-linking (1.6 mol%

instead of 5 mol%), and with a radius of 214 nm at very low

concentrations. This led the authors of ref. 61 to conclude that

‘‘the vast majority of the interior counterions are condensed or at

least one-dimensionally constrained on the polyelectrolyte chains,

while only a small fraction is free to move three dimensionally in

between the polymer chains’’. This will be further discussed in

some detail in the next subsection on the basis of the dielectric

data obtained for the low-frequency mode. In ref. 61, the experi-

mental structure factor is fitted to integral-equation theories to

obtain the charge. A similar small charge of 400 is found for

microgel particles with a hydrodynamic radius of 724 nm in ref. 4,

by fitting pair-correlation functions as obtained by confocal micro-

scopy to integral equation theory, and a charge of 300 is found in

ref. 55 for particles with a radius of 160 nm at a volume fraction of

0.037 from a fit of the structure factor.

Note that the charges reported in ref. 4, 55 and 61, either

from measurements of the pair-correlation function or the static

structure factor, are ‘‘effective charges’’ that formally describe

interactions between the microgel particles.56–60 As Denton has

shown,57,62 based on linear response theory by modeling the

microgel as a uniformly charged sphere that is permeable to the

point-like assumed microions, the effective microgel pair-potential

u(r) (with r the distance between the centers of the two particles)

is given by a DLVO-Yukawa type potential of the standard form,

for r 4 2ag,

uðrÞ
kBT

¼ lBZeff
2 exp kag

� �

1þ kag

� �2
exp �r




2ag
� �

r
;

where the effective charge Zeff is related to the bare charge Z as,

Zeff = ZF(2kag),

with,

FðyÞ ¼ 12

y2
1þ y=2ð Þ expf�y=2g coshfy=2g � sinhfy=2g

y=2

� �

:

In the linear response treatment by Denton, only the mobile

counterions are considered, without contributions from ions

Fig. 4 (a) The Debye length k�1 as a function of the weight concentration,
obtained from fits to the electrode-polarization equations. (b) The quantity
Z/(1� jgel) as a function of concentration obtained fromeqn (18). The solid blue
line corresponds to the blue curve in (a) according to eqn (18). The inset shows
the extrapolation of this quantity to zero concentration. (c) The net charge as a
function of concentration. The blue curve relates to the blue curve in (b)
according to the volume fraction given in Fig. 5c. The dashed line is the effective
charge that describes inter-particle interactions according to ref. 62. This is the
charge that would be obtained from pair-correlation function measurements.
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inside the microgel that are Manning-condensed on the poly-

mer backbone. For the here considered microgels, Manning

condensation does not occur, as will be discussed in detail in

the next subsection. The effective charge based on the Denton

model is plotted in Fig. 4c (the dashed line). At infinite dilution,

the effective charge is found to be equal to 195 � 60 elementary

charges. The effective charge of 190 reported in ref. 61 is

independent of the volume fraction, which, except for the

largest concentration, is not larger than 0.21 (there is mistake

in the calculation of the molar concentrations given in ref. 61;

personal communication with Dr P. Holmqvist). The effective

charge that we find is also reasonably constant for such low

volume fractions (the volume fraction for our system at 1 wt% is

about 0.15).

5.2 The low-frequency mode: polarization due to mobile ions

within the microgel

The low-frequency mode in the frequency range III is due to

polarization as a result of field-induced motion of ions within

the microgel. As the number of H+-ions that is released on

dissolving a microgel particle in water is very much smaller

than the total number of dissociable protons within the micro-

gel, the number concentration cin in eqn (12) for the bare inner-

screening length is to a very good approximation equal to

cin = Ztit/vp, with Ztit = (2.4 � 0.2) � 107 the titration charge,

and vp = (4p/3)ag
3 the volume of a microgel particle, where ag is

the geometrical radius of the particles (with the index ‘‘g’’

standing for gel). Since the radius at infinite dilution is equal

to (546 � 15) nm, the bare inner-screening length kin
�1 given in

eqn (12) is thus found to be equal to (1.7 � 0.2) nm for very low

concentrations. From the data in Fig. 3a for the characteristic

frequency at zero concentration and eqn (15), we find a diffu-

sion coefficient of D+ = (3.4 � 0.4) � 10�14 m2 s�1, which is

orders of magnitude smaller than the diffusion coefficient

9.3 � 10�9 m2 s�1 of H+-ions in water.

There are three possible mechanisms that can lead to a

reduction of the diffusion coefficient: hindrance of motion of

the H+-ions by the polymer network, Manning-ion condensation

that causes ions to move near to the polymer backbone which

leads to an increased friction, and a high degree of association of

H+-ions to the PNIPAM network that leads to a lower mobility as

association leads to temporary immobilization. Since the mesh

size of the network is estimated to be 30 nm, the reduced

mobility due to the hindrance by the network for motion of the

hydrated ions is expected to be moderate.63 The fraction of

condensed ions can be estimated from the molecular weight of

the microgel particles and the titration charge. The molecular

weight of a NIPAM monomer is 113 g mol�1, while the contribu-

tion to the length of the PNIPAM chain per monomer is close to

0.30 nm. From the molecular weight of the PNIPAM particles

of 2.16 � 1010 g mol�1 and the total charge of 2.4 � 107e (see

Section 4.1), the line charge density is found to be equal to

0.36e nm�1. This value is below the critical value e/lB of the line

charge density where Manning-condensation sets in (where

lB = 0.74 nm is the Bjerrum length). Ion condensation can there-

fore not explain the strong reduction of the diffusion coefficient.

We note that the role played by condensed ions in the dielectric

response of highly charged, linear polyelectrolytes is still under

debate (see ref. 64, where simulations are presented and an

overview of the current understanding is given). The very small

value of the diffusion coefficient is therefore attributed to the

high degree of association of protons to the polymer backbone,

possibly similar to the hydrogen bonding as described in ref. 65.

Such a high degree of association has been suggested in ref. 55

and 61 to be responsible for the relatively small amount of ions

that is released from within the microgel into the surrounding

de-ionized water as compared to the total number of dissociable

groups, that is, the titration charge. The reduction of the diffu-

sion coefficient can be estimated by equating the electro-

chemical potential of dissociated H+-ions within the microgel

with that of the ions in the solvent, outside the diffuse double

layer. Using the Debye–Hückel expression for the potential within

the gel, this leads to [H+]in = [H+]out exp{ZlB/ao,g(1 + k0ao,g)} =

1.76 � 1021 ions per m3, where [H+]in is the H+-ion concen-

tration in dissociated form inside the microgel (not to be

confused with cin, which also contains the number of tempo-

rarily associated ions), [H+]out is the concentration in water,

ao,g = 546 nm is the particle radius at infinite dilution, and

where k0
�1 = 210 nm is the Debye length. For infinite dilution

we have [H+]out = 2.54 � 10�6 M as shown in Appendix D, which

is the concentration in pure water including atmospheric

carbon dioxide. Note that for larger particle concentrations

the Hout
+-concentration will be considerably higher. The above

equation neglects the effect of confinement on the chemical

potential of the dissociated ions by the polymer network, and is

therefore only semi-quantitative. Since for low volume fractions

we have Z = 390 (see Section 5.1) it is thus found from the

titration charge and the radius of the microgel particles that the

fraction of protons that is dissociated is approximately equal to

[H+]in � (4p/3)ag
3/Ztit = 5.0 � 10�5. From a two-state approxi-

mation where the diffusion coefficient is either equal to that of

a freely diffusing H+-ion in dissociated form or equal to zero in

the associated form, the average diffusion coefficient is thus

estimated as 4.7 � 10�13 m2 s�1. This estimated value for the

diffusion coefficient is of the same order of magnitude as the

earlier experimentally determined diffusion coefficient at very

high dilution of D+ = (3.4 � 0.4) � 10�14 m2 s�1, which strongly

suggests that the low value for the diffusion coefficient is

indeed due to the high degree of association of H+-ions to the

PNIPAM network.

The effective inner-screening length, that is, the inverse

Debye length corresponding to the true ionic strength within

the gel matrix, is equal to (see eqn (12)),

keffin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

be2ceffin




es

q

¼ fþ
1=2kin; (19)

where,

ceffin = f+cin, (20)

is the concentration of dissociated ions, which determines the

ionic strength. Since f+ = 3.7 � 10�6 (this value is obtained from

the ratio of the diffusion coefficient D+ = 3.4 � 10�14 m2 s�1 at
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infinite dilution as discussed in the beginning of this subsection,

and the free diffusion coefficient 9.3 � 10�9 m2 s�1), the effective

inner-screening length is thus equal to 900 nm. For the present

microgel particles suspended in water, the true Debye length within

the gel matrix is not small as compared to the particle radius. This

is very different from the microgel particles considered in ref. 66,

where NaOH is added to the suspension in order to dissociate the

protons from the polymer backbone, which provokes swelling of

the microgel. In that case the fraction of dissociated protons is

close to unity, giving rise to an effective inner-screening length that

is much smaller than the particle radius.

The variation of the characteristic frequency with concen-

tration in Fig. 3a is due to particle shrinkage on increasing their

concentration. Shrinkage decreases the bare inner-screening

length, since it leads an increase of the concentration of the

total number of dissociable protons cin, and thereby increases

the characteristic frequency (see eqn (12) and (15)). The diffusion

coefficient D+ can also be a function of concentration due to the

variation of the degree of association of H+-ions to the PNIPAM

network upon particle shrinkage. In view of the above discus-

sion, we thus write the diffusion coefficient as,

D+ = f+D
0
+, (21)

where f+ is the fraction of dissociated ions, and D0
+ = 9.3 �

10�9 m2 s�1 is the diffusion coefficient of a proton in water.

According to eqn (12) and (15) we have,

o0 ¼
1

3
Dþkin

2 ¼ ZtitD
0
þlB

fþ
ag3

; (22)

where Ztit = (2.4 � 0.2) � 107 is the number of titration charges.

From the data in Fig. 3a we can thus obtain the quantity f+/ag
3

as a function of the weight concentration, which is plotted in

Fig. 5a. Fig. 5b shows the concentration dependent radius (the

filled circles), assuming a constant fraction of dissociated ions,

for which arguments will be given below.

The above discussed estimate of the fraction f+ of disso-

ciated protons at low concentrations shows that f+ increases

with increasing net charge. The estimate becomes inaccurate,

however, for high volume fractions of microgel particles, since

in case of strong double-layer overlap there is no region within

the solvent anymore where the potential is zero, so that [H+]out in

the earlier consideration becomes ill-defined. That f+ increases

with increasing net charge is nevertheless expected to remain

valid also for higher microgel particle concentrations. A higher

concentration of dissociated mobile H+-ions within the microgel

leads to an increased number of expelled ions, and hence to an

increased net charge. Since the net charge increases with

increasing concentration (see Section 5.1), f+ is thus expected

to increase with increasing concentration. A lower limit for the

microgel particle radius can therefore be obtained from Fig. 5a

by assuming that f+ is constant, independent of concentration.

The volume of a particle is thus seen from Fig. 5a to decrease

by at most a factor of 3.5 from high dilution to 6 wt%. The

corresponding volume fraction at this high concentration can be

calculated from the connection between the number concen-

tration cgel and the weight concentration of particles, as obtained

from the molecular weight: cgel [microgel particles/m3] = 2.71 �
1017 � c [wt%]. It is thus found that the volume fraction is

at least equal to 0.33 at 6 wt%. This seemingly low limiting

volume fraction at high concentrations is either due to the long-

ranged electrostatic forces with which surrounding particles act

onto the covalently bounded negative charges on the backbone

of each microgel particle, and/or the increased electro-osmotic

pressure exerted by ions onto the microgel particle on increas-

ing the concentration. The limiting volume fraction of 0.33 may

seem small. However, the particles act as spheres with an

effectively larger size due to the long-ranged electrostatic repul-

sive interactions, so that the corresponding ‘‘effective volume

fraction’’ that accounts for the electrostatic interactions is quite

high. The electrostatic forces keep the particles at distances

significantly larger than the diameter of the microgel particles.

This can be quantified by mapping the charged particles onto

an equivalent hard-sphere system. A well-established method to

map charged spheres onto an equivalent hard-sphere system is

based on the Gibbs–Bogoliubov free energy variation67 with the

Verlet–Weiss corrected Percus–Yevick pair-correlation function for

hard spheres68,69 as an input. Minimizing the Gibbs–Bogoliubov

free energy expression with respect to the hard-sphere diameter

leads to equivalent hard-sphere volume fractions as plotted

with a dashed line in Fig. 5c, which is seen to asymptote to

about 0.64. Other more crude estimates of the equivalent hard-

sphere volume fraction (for example based on an equivalent

radius of ag + k�1, or a diameter equal to the distance where the

pair-potential energy equals the thermal energy kBT), give rise

to similar large values for the volume fraction. When the equi-

valent hard-sphere volume fraction would have been as high as

0.70, say, this would imply an increase of f+ by about 10%. The

variation of f+ with concentration is therefore weak as com-

pared to that of the particle volume, which changes by a factor

of 3.5. In the sequel we will therefore neglect the concentration

dependence of f+, and set it equal to the value f+ = 3.7 � 10�6 at

Fig. 5 (a) The quantity f+/ag
3 as a function of concentration, obtained

from the experimental results in Fig. 3a and eqn (22). (b) The concentration
dependence of the radius, as obtained from (a) with the neglect of the
weak concentration dependence of f+. The starred data points are taken
from ref. 61, for microgel particles with a considerably smaller cross-linking
density. (c) The weight-concentration dependence of the volume fraction.
The lower filled data points refer to the volume fraction of the microgel
particles, while the upper open data points refer to the corresponding
volume fraction of an equivalent hard-sphere system. The blue lines are
guides-to-the-eye.
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high dilution. This gives rise to the concentration dependence

of the radius as plotted in Fig. 5b.

The starred data points in Fig. 5b for the radius dependence

on concentration refer to a weaker crossed-linked microgel

system:61 1.6 mol% instead of 5 mol%. As expected, the concen-

tration dependence of the radius of these less cross-linked

microgels is more pronounced. The ionic microgel particles with

a cross-linking density of 0.36 mol% in ref. 70 with a hydro-

dynamic radius of 305 nm at infinite dilution shrink to 220 nm at

a concentration of 2 wt%. The corresponding shrinkage lies in

between that for the two microgels mentioned above, despite the

much smaller cross-linking density. The Debye length outside

these particles is much smaller due to the addition of NaOH,

which leads to negligible electrostatic interactions, so that shrink-

age is due to steric interactions and/or osmotic deswelling. For

such much higher ionic strengths outside the particles, and thus

a much smaller Debye length in the surrounding solvent, shrink-

age due to inter-particle interactions only occurs at high volume

fractions due to steric interactions, possibly in combination with

variations in electro-osmotic pressure.66,70–72

There is as yet no theory that describes the combined effects of

inter-particle interactions, osmotic pressure, network elasticity,

self-electric network energy, as well as the association/dissociation

equilibrium of protons to the polymer backbone on the shrinkage

of ionic microgel particles.

The degree of softness of microgel particles may be used to

tune their size by adding, for example, relatively small linear

polymers. Such a polymer-induced shrinkage has been observed

for star-polymers in ref. 73.

The amplitude of the slow mode is equal to (9/2)jgel, as

predicted by the theory in Section 3.1 (see eqn (14)), up to large

concentrations of microgel particles. The volume fraction at very

low microgel particle volume concentrations can be obtained

from the size of 546 nm and the molecular weight of 2.16 �
1010 g mol�1 (see Section 4.1) in terms of the weight concen-

tration: jgel = 0.19 � c [wt%]. The dashed blue line in Fig. 3b

corresponds to this relation which neglects particle shrinkage

on increasing concentration, while the solid blue line corre-

sponds to the volume fraction that includes shrinkage according

to the data in Fig. 5b. The experimental values for the amplitudes

in Fig. 3b imply unrealistically high volume fractions beyond

concentrations of about 2 wt%. Such seemingly unrealistic large

volume fractions can only occur when there is severe particle

interpenetration. This would, however, lead to a decrease of the

polarization amplitude, which is not observed in Fig. 3b. The

above found maximum volume fraction of 0.33 confirms that no

interpenetration occurs. The reason for the discrepancy between

the experimental and predicted amplitudes is as follows. As

discussed in Section 2, Appendix A and in ref. 20, the lineariza-

tion of electro-kinetic equations fails for low frequencies in case

there is a large effect of electrode polarization. As the effect of

electrode polarization is very strong for the higher microgel

particle concentrations (as can be seen from Fig. 2b), the corres-

ponding amplitudes of the slow mode are therefore unreliable.

For the highest concentration, the low-frequency plateau develops

at a frequency of about 1 kHz, where the contribution to the

measured dielectric constant from electrode polarization is as

large as 3900e0, for 2.89 wt% the corresponding contribution is

500e0, and for c = 1.44 wt% about 50e0. A reliable determination of

the low-frequency plateau for larger microgel particle concentra-

tions requires a non-linearized Poisson–Boltzmann approach,

which has not been pursued yet, while quite accurate data are

required to deal with the dominant and steeply rising electrode

polarization contribution. The open symbols in Fig. 3b are used to

indicate that these data points can not be reliably compared to

the theory developed in this study. Note that, contrary to the

plateau value, the characteristic frequency for the slow mode is

reliable up to large particle concentrations, as the relaxation

occurs at sufficiently high frequencies, where electrode polari-

zation is much less pronounced.

The large amplitude of the low-frequency mode is also found

for polyelectrolyte brushes, which is likewise attributed to polar-

ization due to charges inside the brush.14 It is uncertain whether

this high amplitude is also due to interference of electrode

polarization. Contrary to the present ionic microgels, ion con-

densation on the polymer backbone is non-negligible for the

polyelectrolyte brushes (about 65% of the mobile charges are

estimated to be condensed), leading to a reduction of the ion

mobility by a factor of approximately 1.5.

5.3 The middle-frequency mode: polarization of the diffuse

electric double layer

The mode that relaxes at intermediate frequencies in the range

II is due to polarization of the diffuse double layer outside the

particles, within the solvent.

For very low concentrations, where electric double layers do

not overlap, an estimate for the relaxation time for concen-

tration polarization is given is eqn (16) for o0,cp. Using that

D = 9.3 � 10�9 m2 s�1 and ag = 546 nm, it is found that o0,dl =

4.0 � 104 Hz. This estimate is in reasonable agreement with the

experimental value for the middle mode at zero concentration

in Fig. 3c (the black tilted triangle at zero concentration indicates

this value), and is very different from the characteristic frequencies

for the two other modes.

What is not included in eqn (16) is the concentration

dependence due to overlap of electric double layers. Already at

a concentration of 1 wt%, the effective volume fraction corres-

ponding to an effective radius of ag + k�1 is about 0.3. This

indicates that diffuse double layers already significantly overlap

at that concentration. The cell model shows only a single relaxa-

tionmode which is well described by a Debye–Maxwell form. This

single relaxation mode is due to concentration polarization, as

discussed in Section 3.2. The solid blue lines in Fig. 3c and d for

the characteristic frequency and amplitude, respectively, are

based on the cell model described in Section 3.2. In view of the

qualitative nature of the cell model for large concentrations, there

is a reasonable agreement with the data for the middle mode.

Note that the characteristic frequencies for the two other modes

are more than an order of magnitude off from these theoretical

predictions for double-layer polarization.

The significant increase of the characteristic frequency with

increasing concentration is most probably due to the strong
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overlap of double layers: the exchange of ions between double

layers of neighbouring particles in order for polarization to relax

requires diffusive displacements over relatively small distances.

This is also the reason why the amplitude exhibits a maximum as

a function of concentration, as polarization charges from over-

lapping double layers tend to cancel. The decrease of the ampli-

tude with increasing concentration is due to overlap of double

layers, and not due to a low value of the dielectric constant of the

corematerial of the microgel particles,49 since the microgel in the

swollen state contains a large fraction of water.

We note that the a liquid-crystal phase transition occurs at

about 4 wt%. For the two highest concentrations the system is

therefore in a shear-molten crystalline state. This may have an

effect on the polarization process of the double layers, while the

two other modes are quite insensitive to structural ordering of

surrounding particles.

5.4 The high-frequency mode: polarization of the polymer

backbone

The relaxation process at high frequencies in the range I is

attributed to dielectric polarization of the polymer backbone.

The polarization process involves the polymer network itself,

water molecules that are solvated to the polymer backbone, as

well as ions that diffuse on small length scales in the vicinity of

the network. The characteristic frequency for such polarization

mechanisms are expected to be insensitive to the microgel

particle concentration, which is indeed what is seen in Fig. 3e,

contrary to the two slower modes. A similar relaxation process at

such high frequencies (of about 3 � 107 Hz) is observed for

linear-chain PNIPAM in ref. 12. This mode is only observed in

the swollen state, and is attributed to the polarization due to

the orientation of water molecules which solvate the polymer

backbone.12 The high-frequency mode is in principle composed

of several polarization mechanisms, as mentioned above. Since

the amplitude of the high-frequency mode is quite small, it is not

possible to distinguish within experimental error between the

several relaxation modes that might contribute. Free-diffusive

displacements of H+-ions over distances of the order of the mesh

size (which is about 30 nm) corresponds to frequencies of the

order 100 MHz. Even if the diffusion coefficient is a hundred

times less than the free diffusion coefficient (due to interactions

with the network) these processes will not contribute to the

frequency range of mode II.

6 Conclusions

Dielectric spectroscopy measurements on PNIPAM-co-AA [poly-

(N-isopropylacrylamide-co-acrylic acid)] microgel suspensions

in de-ionized water are quantitatively interpreted on the basis

of an improved theory for electrode polarization and a new

model for the polarization of the ionic microgel particles. The

microgel particles are 5% cross linked, and have a radius of

546 nm at infinite dilution.

The experimental spectra reveal four distinct contribu-

tions to the storage-permittivity: a generic contribution from

electrode polarization, and three modes stemming from polar-

ization of the microgel particles. These modes relax at well

separated frequencies, which allows for the determination of

the amplitudes and the characteristic frequencies of each

of them.

A theory is developed for electrode polarization for arbitrary

frequencies, and for the polarization of the microgel particles

due to the mobile charges within the gel matrix. Both theories

are based on the linearized standard electro-kinetic equations

of motion for ion concentrations. A cell model is employed to

account for the relaxation process of the (overlapping) electric

double layers that surround the microgel particles.

A fit of the experimental dielectric spectra for various

microgel particle concentrations to the theory for electrode

polarization and three additional Debye–Maxwell relaxation

functions quantifies the amplitudes and characteristic frequencies

of all modes as functions of the concentration.

The Debye length is the only fit parameter for the electrode

polarization contribution. The Debye length decreases with

increasing microgel concentration due to the increased ionic

strength resulting from the microgel counter ions. This informa-

tion is used to extract the net charge of the microgel particles as

a function of their concentration. It is found that the net charge

is approximately constant (390 elementary charges) up to volume

fractions of about 0.15, and then quite steeply increases (up to

12000 elementary charges) as the volume fraction reaches its

maximum value of 0.33. The shrinkage of a microgel particle is

due to the long-ranged electrostatic forces of surrounding parti-

cles acting on its backbone charges.

The relaxation mode at low frequencies is due to polarization

of the microgel particles resulting from mobile charges within

the gel matrix. This polarization mechanism is affected by

particle interactions only indirectly through particle-interaction

induced shrinkage and electric fields generated by surrounding

particles. The shrinkage of particles increases the concentration

of mobile ions within the microgel particles, leading to changes

in their polarization. From the newly developed theory and the

experimental characteristic frequencies, the concentration

dependent size of the particles is determined. The size

decreases quasi-linearly from 546 nm to 350 nm at the highest

volume fraction. The volume fraction asymptotes to approxi-

mately 0.33, which corresponds to an equivalent hard-sphere

volume fraction of 0.64. The diffusion coefficient of H+-ions

within the microgel is found to be orders of magnitude smaller

than the diffusion coefficient of protons in water. This is

attributed to the high degree of association of protons to the

polymer backbone, which also explains the very small net

charge as compared to the bare (titration) charge. The concen-

tration dependence of the amplitude of this relaxation mode is

in accordance with theory only for quite small concentrations.

For large concentrations, the experimental amplitudes are

larger than their theoretically predicted values. This is a

consequence of the failure of the linearized theory for the

description of the electrode polarization contribution, in

combination with it’s dominant contribution and sensitive

dependence on frequency. The concentration dependence of
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the volume fraction could be directly extracted from the ampli-

tudes when a non-linear theory for electrode polarization is

available, and with quite accurate data for the low frequencies

where the plateau polarization for this mode is reached. The

absence of a drop of the amplitude with increasing concen-

tration indicates that there is no exchange of mobile charges

between particles, and hence that there is no inter-particle

interpenetration.

The mode at intermediate frequencies is due to double-layer

polarization. The characteristic frequency at very low microgel

particle concentration is in accord with the theoretical predic-

tion corresponding to concentration polarization (some times

also referred to as ‘‘a-relaxation’’ or ‘‘volume diffusion’’).

The concentration dependence of the amplitude and character-

istic frequency of this mode is due to particle shrinkage, the

change in the Debye length, as well as a strong double-layer

overlap. There is a semi-quantitative agreement of the con-

centration dependence of the characteristic frequency and

amplitudes with a cell model, where the volume fraction and

the Debye length as determined from the characteristic fre-

quency of the slow mode and electrode polarization are used as

an input.

The characteristic frequency of the fast mode, due to polar-

ization of the polymer backbone, is essentially independent of

concentration, as the backbone properties are hardly affected

by microgel particle crowding. The characteristic frequency of

this mode is of the same order as found in earlier studies on

polymer-backbone polarization.

Dielectric spectroscopy is thus shown to be a valuable

experimental tool to determine the net charge and radius of

microgel particles as a function of their concentration, as well as

the degree of association of protons to the polymer backbone.

The quantitative evaluation of experimental dielectric spectra

requires theories for electrode polarization and the polarization

of microgels due to mobile charges within the gel matrix.

Dielectric spectroscopy can possibly play a future role to system-

atically study the behaviour of several types of ionic microgel

particles, also as a function of temperature, including more

complicated microgels like microgel particles where multivalent

ferricyanides bind to several monovalent polymer charges, thus

producing an apparent secondary network,74 and polyampholytic

microgels.75

The present experiments have been performed at low ionic

strength. For high ionic strengths, electrode polarization domi-

nates up to higher frequencies so that the characterization of

polarization due to mobile charges within the microgel may not

be feasible. When at higher ionic strengths electrode polariza-

tion masks the internal polarization mode, only two microgel-

particle modes can be experimentally probed, which correspond

to electric double layer polarization and polarization of the

polymer network. At higher pH, however, where the association

of protons to the polymer network is less pronounced, the

mode due to polarization of charges within the microgel shifts

to higher frequencies. In such cases one may still resolve the

internal polarization mode also at higher ionic strengths. For

increasing pH, however, the internal mode may start to overlap

with the double layer polarization mode in a way that they

might not be distinguished anymore.

There are two improvements of the theories developed in

this paper that may expand their applicability also to other

types of microgel particles. First of all there is a generic need for

an electrode-polarization theory based on non-linearized electro-

kinetic equations. Secondly, the present theory is limited to

quasi-homogeneous polymer networks. To extend the present

theory to highly inhomogeneous microgel particles, the same

electro-kinetic equations can be employed, which most probably

can only be solved numerically.

Appendix A: solution of the electro-
kinetic equations for electrode
polarization and the resulting apparent
dielectric constant

The solution to the system (2)–(5) is conveniently formulated in

complex quantities. Let r0 and r00 denote the in-phase and out-

phase components of the charge density r, that is, r(r,t) =

r0(r7o)cos{ot} + r00(r|o)sin{ot} (the notation r0(r7o) is used to

indicate that r0(r) is parametrically depending on the frequency).

Defining the complex charge density ~r = r0 � ir00, it is easily seen

that the real part of ~r exp{iot} is equal to r0(r7o)cos{ot} +

r00(r|o)sin{ot}. Similarly introducing the complex potential ~F,

the system (2)–(5) is conveniently rewritten as,

d2

dz2
� ~k2

� �

~r ¼ 0;

d2

dz2
~F ¼ �~r

es
;

d

dz
~rþ esk

2 d

dz
~F ¼ 0; for z ¼ �1

2
L;

~F z ¼ 1

2
L

� �

� ~F z ¼ �1

2
L

� �

¼ �E0L; (23)

where the complex-valued screening length ~k�1 is equal to,

~k2 ¼ k2 þ i
o

D
:

Note that,

~k ¼ k½ f ðLÞ þ igðLÞ�;

where,

f ðLÞ ¼ 1
ffiffiffi

2
p 1þ 1þ L2

	 
1=2
h i1=2

;

gðLÞ ¼ 1
ffiffiffi

2
p �1þ 1þ L2

	 
1=2
h i1=2

;

with the dimensionless frequency L equal to,

L ¼ o

Dk2
:
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Convenient relations in the evaluation of real and imaginary

parts are,

f 2(L) � g2(L) = 1,

f ðLÞgðLÞ ¼ 1

2
L:

Since the charge density is an odd function of z, the solution to

the first equation of motion is,

~rðzÞ ¼ C1 sinhf~kzg; (24)

where C1 is an integration constant. Since the potential is also

an odd function of z, it follows from the Poisson equation that,

~FðzÞ ¼ � 1

es~k2
~rþ C2z; (25)

with C2 a second integration constant. The two boundary

conditions in eqn (23) lead to,

C1~k 1� k2

~k2

� �

cosh
1

2
~kL

� �

þ esk
2C2 ¼ 0;

� 2C1

es~k2
sinh

1

2
~kL

� �

þ C2L ¼ �E0L;

where the amplitude E0 is taken along the minus z-direction.

The solutions to these equations are,

C1 ¼
es~k

2L

~kL
~k2

k2
� 1

� �

cosh
1

2
~kL

� �

þ 2 sinh
1

2
~kL

� �E0;

C2 ¼ �
~kL

~k2

k2
� 1

� �

cosh
1

2
~kL

� �

~kL
~k2

k2
� 1

� �

cosh
1

2
~kL

� �

þ 2 sinh
1

2
~kL

� �E0: (26)

Introducing the dimensionless frequency,

O ¼ kLL ¼ oL

Dk
;

which is much larger than L for kL c 1, we have,

~kL
~k2

k2
� 1

� �

¼ i
~k

k
O � iO;

provided that L { 1. Within the bulk of the solution, away

from the double layers at the electrodes, the charge density is

zero, so that it follows from eqn (25) and (26) that the electric

field strength in the bulk of the solution is equal to,

Ebulk ¼ �C2 ¼
iO

2þ iO
E0 ¼

O2

4þ O2
þ i

2O

4þ O2

� �

E0: (27)

The amplitude of the applied field within the bulk of the suspen-

sion is thus equal to,

Ej jbulk¼
O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ O2
p :

For large O we have Ebulk = E0, so that no electrode polarization

occurs, while for O - 0 it is found that Ebulk = 0, so that

the double layers at the electrodes completely screen the

imposed field. Note that the bulk field strength is essentially

equal to the applied field strength for O E 10, which justifies

the leading order expansion with respect to L = O/kL { 1.

Eqn (27) for the attenuation of the bulk field strength due to

electrode polarization has been tested experimentally in ref. 76,

where field-induced phase transitions have been probed as a

function of the separation between the electrodes.

Due to the large contribution of electrode polarization to the

dielectric constant, electrode polarization contributes up to much

larger frequencies in dielectric experiments, such that L is not

necessarily small.

The derivation of the relation of the above calculated charge

density to the apparent dielectric constant needs some basic

considerations on what is actually measured in a dielectric

spectroscopy experiment. The suspension can be represented

as an electric circuit of a capacitor in parallel with a resistor.46

The capacitor incorporates dielectric polarization at the elec-

trodes, while the resistance accounts for the conductivity of the

suspension. An oscillating voltage V = V0 cos{ot} with frequency

o is applied and the phase lag and amplitude of the resulting

current is measured.

First consider the current jR through the Ohmic resistance,

which is equal to jR = Z
�1V0cos{ot}, with Z = R the Ohmic resistance.

Since for a parallel plate geometry the Ohmic resistance is propor-

tional to the length L of the sample cell and inversely proportional to

the area A of the electrodes, the specific conductance s that is

independent of the sample-cell geometry can be defined as Z�1 =

sA/L, and hence jR = (A/L)sV0cos{ot}. This is most conveniently

written in complex notation as follows. Define Ṽ = V0exp{iot}. The

applied potential is the real part of this complex-valued potential.

Introducing the complex conductivity ~s = s0 � is00, the real part of

the complex-valued current j̃R = (A/L)~sṼ is easily shown to be equal

to (A/L)[s0 cos{ot} + s00 sin{ot}]V0, so that s0 relates to the in-phase

part of the current, and s00 to the out-phase part. We thus write for

the current through the resistor,

j̃R = (A/L)~sṼ.

Next consider the current jC that passes through the capacitor.

Since the potential difference between the two parallel plates that

constitute the capacitor is fixed, as it is applied by external means,

the total charge on each of the plates at each instant of time is also

fixed. The total charge is equal to the externally applied charge

Qext on a given plate plus the chargeQpol due to polarization of the

sample. Let Q0 denote the charge that corresponds to the given

external potential when there is no polarization charge, that is,

when there is vacuum between the two plates. To keep the

potential fixed when polarization occurs, the externally applied

charge must be enhanced by an amount equal to minus the

polarization charge. Hence,

Qext = Q0 � Qpol. (28)

Since the electric field strength E between the two plates with

an externally applied surface charge density sext is equal to

E = sext/e by definition, we have,

Q0 = (A/L)e0 cos{ot}V0, (29)
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with e0 the dielectric constant for vacuum. The polarization

charge is by definition related to the dielectric response func-

tions as,

Qpol = �(A/L)[(e0 � e0)cos{ot} + e00 sin{ot}]V0, (30)

with e0 and e00 the storage- and loss-permittivity of the material

between the two plates, respectively. In the complex-number

notation discussed above, it follows from eqn (28) and (29)

that,

Q̃ext = (A/L)~eṼ,

where ~e = e0 � ie00. The complex-valued current through the

capacitor branch is thus equal to j̃C = dQ̃ext/dt, and hence,

j̃C = io(A/L)~eṼ.

The total current is the sum of j̃R and j̃C,

j̃ = (A/L)Z̃�1Ṽ,

where the so-called intrinsic impedance Z is equal to,

~Z�1 ¼ ~sþ io~e ¼ o e00 þ s0

o

� �

þ i e0 � s00

o

� �� �

:

This well-known result shows that the experimentally

determined loss- and storage-permittivities are affected by the

conductivity,

eexp
0 = e0 � s00/o,

eexp
00 = e00 + s0/o,

where the subscript ‘‘exp’’ stands for ‘‘experimental’’.

There are two polarization mechanisms that need to be

subtracted from the measured total dielectric constant in order

to obtain the polarization contribution due to the microgel

particles. First there is an in-phase contribution to the dielec-

tric constant as a result of polarization of the pure solvent,

and secondly there is an apparent polarization due to the

accumulation of ions near the electrode. These two contribu-

tions comprise the dielectric response of a salt solution. The

total polarization charge in eqn (30) for a salt solution can thus

be written as a sum of the apparent contribution Qep from

electrode polarization and the contribution Qs from the pure

solvent,

Qpol = Qep + Qs,

where,

Qep = �(A/L)[eep
0 cos{ot} + eep

00 sin{ot}]V0,

Qs = �(A/L)(es � e0)cos{ot}V0, (31)

with eep
0 and eep

00 the apparent contributions to the dielectric

constant due to electrode polarization.

The electrode polarization contribution can now be

obtained from eqn (31) through the evaluation of the polariza-

tion charge due to the accumulation of ions near the electrodes.

According to eqn (24) and (26), the electrode-polarization

charge is equal to (where ‘‘<’’ stands for ‘‘the real part of’’),

Qep ¼ A

ð
1
2
L

0

dz< ~rðzÞ expfiotg½ �

¼ A<
es~kL cosh

1

2
~kL

� �

� 1

� �

~kL
~k2

k2
� 1

� �

cosh
1

2
~kL

� �

þ 2 sinh
1

2
~kL

� � expfiotg

2

6

6

6

4

3

7

7

7

5

E0:

(32)

Using that V0 = �E0L, and assuming that kL c 1, the expres-

sions in eqn (6) are thus obtained by an explicit evaluation of

the real part in eqn (32).

Appendix B: solution of the
electro-kinetic eqn (11)–(13) for
microgel particle polarization

The solution of the electro-kinetic eqn (11)–(13) for the microgel

particle polarization due to the mobile ions inside the microgel

matrix are again formulated in terms of complex quantities,

as explained in Appendix A. The equation of motion and the

boundary conditions in terms of the complex-valued quantities

read,

r2 � ~kin
2

	 


~r ¼ 0;

r2 ~C ¼ �~r

es
;

n̂ � r~r� eskin
2 E0 �r ~C
	 
� �

¼ 0; r 2 @Vgel; (33)

where qVgel is the spherical surface of the microgel particle.

Furthermore, the amplitude E0 of the external field is a real

quantity, while the complex bare inner-screening length ~k�1 is

equal to,

~kin
2 ¼ kin

2 þ i
o

D
:

The solution of the first differential equation in eqn (33) that is

finite at the origin reads,

~rðrÞ ¼ a
exp �~kinrf g

r
1þ 1

~kinr

� ��

þexp þ~kinrf g
r

1� 1

~kinr

� ��

cosfYg;

(34)

whereY is the angle with the direction of the external field, and

a is an integration constant, that is to be determined from the

no-flux boundary condition. To implement the boundary con-

ditions, we have to calculate the potential C from the Poisson

equation (the middle equation in eqn (33)). The solution of

that equation is obtained by expanding the Green’s function

1/|r � r0| of the Laplace operator in spherical harmonics (here

~r(r,t) � ~r(r,t)/(a cosY)),

~CðrÞ ¼ a
cosY

3es

1

r2

ðr

0

dr0r03~rðr0Þ þ r

ðag

r

dr0~rðr0Þ
� �

:
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It follows immediately that (with n̂ the surface unit normal

vector pointing outwards),

n̂ � r ~C
r¼agj ¼ @F

@r r¼agj
¼ �2 cosY

3ag3es

ðag

0

dr0r03~rðr0Þ:

Evaluation of the integral leads to,

n̂ �r ~C r¼agj ¼ a
2cosY

3es ~kinag
� �3

� exp �~kinag
� �

3þ3~kinagþ ~kinag
� �2

� �h

� exp þ~kinag
� �

3�3~kinagþ ~kinag
� �2

� �i

:

Using that,

@~rðr; tÞ
@r r¼agj

¼ �acosfYg~kin2
exp �~kinag
� �

~kinag
1þ 2

~kinag
þ 2

~kinag
� �2

 !"

� exp þ~kinag
� �

~kinag
1� 2

~kinag
þ 2

~kinag
� �2

 !#

;

the no-flux boundary condition at the periphery of the microgel

particle gives,

esE0 ¼ a �~kin
2

kin2
exp �~kinag
� �

~kinag
1þ 2

~kinag
þ 2

~kinag
� �2

( )"

þ 2

3

exp �~kinag
� �

~kinag
1þ 3

~kinag
þ 3

~kinag
� �2

( )

þ ~kin
2

kin2
exp þ~kinag
� �

~kinag
1� 2

~kinag
þ 2

~kinag
� �2

( )

�2

3

exp þ~kinag
� �

~kinag
1� 3

~kinag
þ 3

~kinag
� �2

( )#

:

For the highly charged and large microgel particles under

consideration,

kinag c 1, (35)

so that this result reduces to,

esE0 ¼ a
~kin

2

kin2
� 2

3

� �

exp þ~kinag
� �

~kinag
: (36)

The complex-valued dipole moment P̃ is, according to eqn (34),

equal to (with x ¼ ~kr),

~PðLÞ ¼
ðr¼ag

r¼0

drz~rðrÞ

¼ 2pa

~kin3

ð

~kinag

0

dx expf�xg x2 þ x
� �

þ expfþxg x2 � x
� �	 


¼ �2pa

~kin3
3þ 3~kinag þ ~kinag

� �2
h i

exp �~kinag
� �

n

� 3� 3~kinag þ ~kinag
� �2

h i

exp þ~kinag
� �2

o

;

Under the condition (35), this reduces to.

~PðLÞ ¼ 2pa

~kin3
~kinag
� �2

exp þ~kinag
� �

:

From eqn (36) for a it thus follows that,

~PðLÞ ¼ 2pag
3 ~kin

kin

� �2

�2

3

" #�1

esE0:

Using that,

~k ¼ k f ðLÞ þ igðLÞ½ �;

f ðLÞ ¼ 1
ffiffiffi

2
p 1þ 1þ L2

	 
1=2
h i1=2

;

gðLÞ ¼ 1
ffiffiffi

2
p �1þ 1þ L2

	 
1=2
h i1=2

;

where the dimensionless frequency L is defined as,

L ¼ o

Dkin2
;

and hence,

~kin
2

kin2
¼ 1þ iL;

it is readily found that the in-phase and out-phase part of the

induced dipole moment,

P(o) = P0(o)cos{ot} + P00(o)sin{ot},

are respectively equal to,

P0ðoÞ ¼ 6pag
3 1

1þ ð3LÞ2esE0;

P00ðoÞ ¼ 6pag
3 3L

1þ ð3LÞ2esE0:

Since the additive increment of the dielectric constant due to

the particles is equal to ein = cgelP/E0, with cgel the number

density of microgel particles, it is finally found that,

ein
0

es
¼ 9

2
jgel

1

1þ ð3LÞ2;

ein
00

es
¼ 9

2
jgel

3L

1þ ð3LÞ2;

where jgel = (4p/3)cgelag
3 is the volume fraction of microgel

particles.

Appendix C: electrode polarization:
some experiments on salt solutions

The apparent storage-permittivity of NaCl-solutions for various

concentrations are shown in Fig. 6. There is a marked shift of

the onset of electrode polarization towards larger frequencies

on increasing the salt concentration, as also observed in ref. 20,

24 and 26. This is in accordance with the corresponding

decreasing dimensionless frequencies in eqn (8) for a given
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applied frequency o. There are three parameters that deter-

mine the dielectric constant: the gap width L, the ion diffusion

coefficient D, and the Debye length k�1. The gap width is fixed

to 6.45 mm. The ion diffusion coefficient is taken equal to the

average 1.5 � 10�9 m2 s�1 of those of Na+ and Cl�, which are

respectively equal to 1.1 and 1.9 � 10�9 m2 s�1. Using these

numerical values, the experimental data are fitted to eqn (6)–(8)

with respect to the Debye length. The solid lines in Fig. 6a for

the salt concentrations 0.030 (the green data points), 0.085 (red),

0.65 (grey), and 2.58 mM (purple) correspond to fitted Debye

lengths of 55, 38, 12.5, and 5.8 nm, respectively. These results

can be compared to the Debye lengths as calculated from eqn (4),

from which is follows that k�1 ½nm� ¼ 1
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:07� 10�2 � c ½mM�
p

,

where c [mM] is the concentration of neutral salt molecules

in mM. This leads to calculated Debye lengths of 56, 33, 12.0,

and 6.0 nm, respectively, which are in good agreement with

those obtained from the fits.

For the frequencies under consideration (less than 107 Hz), the

out-phase conductivity is zero, while the in-phase conductivity

is constant, being equal to its zero-frequency limit. According

to eqn (17) there is thus a contribution to the experimentally

determined loss-permittivity that varies inversely proportional

to the frequency, and increases linearly with the salt concen-

tration (for the low salt concentrations considered here). The

same dependencies are also exhibited by the contribution from

electrode polarization, as long as O 4 10. For such frequencies

it follows from eqn (9) that eep
00/e0 = (es/e0)Dk

2/o, while k2 is

proportional to the salt concentration. Both the apparent

dielectric response due to electrode polarization as well as the

conductivity contribution to the measured loss-permittivity

thus exhibit the same frequency and salt-concentration depen-

dence. These two contributions are therefore difficult to

separate. The measured loss-permittivity is plotted in Fig. 6b

on a double logarithmic scale for various salt concentrations,

with the same color codes as in Fig. 6a. There is indeed aBo�1

dependence. The contribution from conductivity and from

electrode polarization are of the same order (the former can

be estimated from the specific ion-conductivities, which are

5.0 � 10�3 S m2 mol�1 and 7.6 � 10�3 S m2 mol�1, for Na+-ions

and Cl�-ions, respectively, from which it follows that s0/e0 [s
�1] =

1.4 � 109 � c [mM]). These contributions to the loss-permittivity

are very much larger than those to the storage-permittivity

(compare Fig. 6a and b), and dominate the measured loss-

permittivity of microgel suspensions. The loss-permittivity

must therefore be obtained from the loss-permittivity through

the Kramers–Kronig relations, as has been done, for example,

in ref. 9.

Appendix D: ionic strength and
conductivity of water in equilibrium
with atmospheric carbon dioxide

The concentration of carbonic acid H2CO3 is directly propor-

tional to the partial pressure pCO2
of gaseous CO2 in the air,

[H2CO3] = KCO2
pCO2

, (37)

where [X] will be used to denote the concentration of a sub-

stance X in M �moles dm�3. The constant KCO2
is independent

of the pH since it describes the mere solvation of gaseous

carbon dioxide (provided that concentrations are low, so that

thermodynamic activities are equal to concentration). Carbonic

acid will dissociate in HCO3
� and CO3

2�. The mass-action laws

for these dissociation reactions are,

Hþ½ � HCO3
�½ �

H2CO3½ � ¼ KC1
¼ 4:3� 10�7 M;

Hþ½ � CO3
2�	 


HCO3
�½ � ¼ KC2

¼ 5:6� 10�11 M;

(38)

where the acid constants KCj
are independent of pH and ionic

strength, for the low concentrations under consideration. The

remaining relations that are necessary to calculate the ionic

strength are,

[H+][OH�] = Kw = 10�14.0 M2,

2[CO3
2�] + [HCO3

�] + [OH�] = [H+]. (39)

The first equation is the mass-action law for the dissociation of

water, while the second equation expresses electro-neutrality.

From the above equations it is readily found that the

H+-concentration is the solution of the cubic equation,

[H+]3 � [H+](Kw + KC1
KCO2

pCO2
) � 2KC1

KC2
KCO2

pCO2
= 0. (40)

The ionic strength I and the conductivity sw of water in equili-

brium with atmospheric carbon dioxide are equal to,

I ¼ 1

2
Hþ½ � þ OH�½ � þ HCO3

�½ � þ 4 CO3
2�	 
� �

;

sw ¼ l0Hþ Hþ½ � þ l0OH� OH�½ � þ l0HCO3
� HCO3

�½ � þ l0CO3
2� CO3

2�	 


;

Fig. 6 (a) The measured storage-permittivity emed
0 of NaCl-solutions for

concentrations of 0.030 (the green data points), 0.085 (the red points),
0.65 (the grey points), and 2.58 mM (the purple points), as a function of
the frequency o. (b) The measured loss-permittivity emed

00 as a function
of the frequency o for the same salt solutions as in (a). The gap width
is 6.45 mm.
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where the l0X’s are the single ion-conductivities of ion species X.

The various concentrations can be expressed in terms of [H+]

from eqn (37)–(39) as,

[OH�] = Kw/[H
+],

[HCO3
�] = KC1

KCO2
pCO2

/[H+],

[CO3
2�] = KC1

KC2
KCO2

pCO2
/[H+]2.

The ionic strength can thus be calculated once [H+] is obtained

as the (numerical) solution of eqn (40).

The value of the constant KCO2
pCO2

at atmospheric pressure has

been determined in ref. 77 in connection to the ionic strength

and pH of dispersions of fd-virus particles in low-concentration

TRIS/HCL-buffers. It is found there from pH-measurements as

a function of the TRIS/HCL-concentration that,

KCO2
pCO2

= 0.015 mM.

We note that tabulated values for the solubility of gaseous CO2

refer to the total amount of dissolved CO2, including HCO3
�

and CO3
2�. That is, Henry’s constant HCO2

, defined as,

[H2CO3] + [HCO3
�] + [CO3

2�] = HCO2
pCO2

, (41)

is tabulated for pure air. The pH-dependence of Henry’s

constant HCO2
can be obtained from eqn (38), after elimina-

tion of [HCO3
�] and [CO3

2�] in eqn (41) in favor of [H+] and

[H2CO3],

H2CO3½ � 1þ KC1

Hþ½ � þ
KC1

KC2

Hþ½ �2

( )

¼ HCO2
pCO2

:

Comparing to eqn (37) thus leads to,

KCO2
¼ HCO2

1þ KC1

Hþ½ � þ
KC1

KC2

Hþ½ �2

( )�1

: (42)

This equation specifies the pH-dependence of Henry’s constant

HCO2
. Tabulated values for Henry’s constant do often not specify

the pH at which they are measured. The value that we find for

KCO2
, however, is of the same order as one would find from

tabulated values of HCO2
together with eqn (42) using reason-

able values for the pH.

From the above results we obtain the following concentrations,

[H+] = 2.54 � 10�6 M, [OH�] = 3.94 � 10�9 M,

[HCO3
�] = 2.54 � 10�6 M, [CO3

2�] = 5.60 � 10�11 M.

The H+- and HCO3
�-concentrations are thus essentially equal

and much larger than the OH�- and CO3
2�-concentrations. The

ionic strength is therefore equal to,

I = 2.54 � 10�6 M,

which implies a Debye length of 192 nm, with an estimated error

of about 10 nm. The conductivity is equal to (using that l0Hþ ¼
35� 10�3 Sm2 mol�1, and l0HCO3

� ¼ 4:5� 10�3 Sm2 mol�1 (ref. 78)),

sw = (1.00 � 0.10) � 10�4 S m�1.

which is in agreement with the experimental value in the range

0.8–1.5 � 10�4 S m�1 found for pure water in atmospheric

equilibrium in ref. 79.
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14 M. L. Jiménez, A. V. Delgado, S. Ahualli, M. Hoffmann,

A. Witteman and M. Ballauff, Soft Matter, 2011, 7, 3758.

15 M. Yang and K. Zhao, Soft Matter, 2016, 12, 4093.

16 H. Ohshima, Sci. Technol. Adv. Mater., 2009, 10, 063001.

17 K. Makino and H. Ohshima, Sci. Technol. Adv. Mater., 2011,

12, 023001.

18 G. R. MacDonald, Phys. Rev., 1953, 92, 4.

19 R. P. Buck, J. Electroanal. Chem., 1969, 23, 219.

20 A. D. Hollingsworth and D. A. Saville, J. Colloid Interface Sci.,

2003, 257, 65.

21 M. Wien, Wied. Ann., 1896, 58, 37.

22 E. Warburg, Drud. Ann., 1901, 6, 125.
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Phys., 2005, 122, 074903.

57 C. N. Likos, in Part Three, Phase Behavior and Dynamics of

Microgel Suspensions, Microgel Suspensions: Fundamentals and

Applications, ed. A. Fernández-Nieves, H. Wyss, J. Mattsson

and D. A. Weitz, Wiley-VCH Verlag GmbH & Co. KGaA,

Weinheim, Germany, 2011.

58 J. Riest, P. Mohanty, P. Schurtenberger and C. N. Likos,

Z. Phys. Chem., 2012, 226, 711.

59 T. Colla, C. N. Likos and Y. Levin, J. Chem. Phys., 2014,

141, 234902.

60 L. Belloni, J. Phys.: Condens. Matter, 2000, 12, R549.

61 P. Holmqvist, P. S. Mohanty, G. Nägele, P. Schurtenberger
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