000822000 001__ 822000
000822000 005__ 20230217133041.0
000822000 0247_ $$2CORDIS$$aG:(EU-Grant)732840$$d732840
000822000 0247_ $$2CORDIS$$aG:(EU-Call)FETPROACT-2016$$dFETPROACT-2016
000822000 0247_ $$2originalID$$acorda__h2020::732840
000822000 035__ $$aG:(EU-Grant)732840
000822000 150__ $$aAn Artificial Leaf:  a photo-electro-catalytic cell from earth-abundant materials for sustainable solar production of CO2-based chemicals and fuels$$y2017-01-01 - 2021-06-30
000822000 371__ $$aImperial College of Science Technology and Medicine$$bImperial$$dUnited Kingdom$$ehttp://www.imperial.ac.uk$$vCORDIS
000822000 371__ $$aTechnical University of Darmstadt$$bTechnical University of Darmstadt$$dGermany$$ehttp://www.tu-darmstadt.de/$$vCORDIS
000822000 371__ $$aFUNDACION IMDEA NANOCIENCIA$$bIMDEA NANO$$dSpain$$ehttp://www.nanociencia.imdea.org/$$vCORDIS
000822000 371__ $$aTU Wien$$bTUW$$dAustria$$ehttps://www.tuwien.ac.at/en/$$vCORDIS
000822000 371__ $$aNational Interuniversity Consortium of Materials Science and Technology$$bINSTM$$dItaly$$ehttp://www.instm.it/en/instm.aspx$$vCORDIS
000822000 371__ $$aÉcole Polytechnique Fédérale de Lausanne$$bEPFL$$dSwitzerland$$ehttp://www.epfl.ch/index.en.html$$vCORDIS
000822000 371__ $$aUniversitat Jaume I de Castellón$$bUniversitat Jaume I de Castellón$$dSpain$$ehttp://www.uji.es$$vCORDIS
000822000 371__ $$aForschungszentrum Jülich$$bForschungszentrum Jülich$$dGermany$$ehttps://www.ptj.de/$$vCORDIS
000822000 371__ $$aSwiss Federal Institute of Technology in Zurich$$bSwiss Federal Institute of Technology in Zurich$$dSwitzerland$$ehttps://www.ethz.ch/en.html$$vCORDIS
000822000 371__ $$aFUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA$$bFUNDACION PRIVADA INSITUTO CATALAN DE INVESTIGACION QUIMICA ICIQ$$dSpain$$ehttp://www.iciq.es$$vCORDIS
000822000 371__ $$aCOVESTRO DEUTSCHLAND AG$$bCOV$$dGermany$$ehttp://www.covestro.com$$vCORDIS
000822000 371__ $$aUniversité de Montpellier$$bUNIVERSITE DE MONTPELLIER$$dFrance$$ehttps://www.umontpellier.fr/$$vCORDIS
000822000 371__ $$aLeiden University$$bLeiden University$$dNetherlands$$ehttp://www.leiden.edu/$$vCORDIS
000822000 372__ $$aFETPROACT-2016$$s2017-01-01$$t2021-06-30
000822000 450__ $$aA-LEAF$$wd$$y2017-01-01 - 2021-06-30
000822000 5101_ $$0I:(DE-588b)5098525-5$$2CORDIS$$aEuropean Union
000822000 680__ $$aA novel concept for a photo-electro-catalytic (PEC) cell able to directly convert water and CO2 into fuels and chemicals (CO2 reduction) and oxygen (water oxidation) using exclusively solar energy will be designed, built, validated, and optimized. The cell will be constructed from cheap multifunction photo-electrodes able to transform sun irradiation into an electrochemical potential difference (expected efficiency > 12%); ultra-thin layers and nanoparticles of metal or metal oxide catalysts for both half-cell reactions (expected efficiency > 90%); and stateof- the-art membrane technology for gas/liquid/products separation to match a theoretical target solar to fuels efficiency above 10%. All parts will be assembled to maximize performance in pH > 7 solution and moderate temperatures (50-80 ºC) as to take advantage of the high stability and favorable kinetics of constituent materials in these conditions. Achieving this goal we will improve the state-of-the-art of all components for the sake of cell integration:

1) Surface sciences: metal and metal oxide catalysts (crystals or nanostructures grown on metals or silicon) will be characterized for water oxidation and CO2 reduction through atomically resolved experiments (scanning probe microscopy) and spatially-averaged surface techniques including surface analysis before, after and in operando electrochemical reactions. Activity and performance will be correlated to composition, thickness, structure and support as to determine the optimum parameters for device integration.

2) Photoelectrodes: This unique surface knowledge will be transferred to the processing of catalytic nanostructures deposited on semiconductors through different methods to match the surface chemistry results through viable up-scaling processes. Multiple thermodynamic and kinetic techniques will be used to characterize and optimize the performance of the interfaces with spectroscopy and photo-electrochemistry tools to identify best matching between light absorbers and chemical catalysts along optimum working conditions (pH, temperature, pressure).

3) Modeling: Materials, catalysts and processes will be modeled with computational methods as a pivotal tool to understand and to bring photo-catalytic-electrodes to their theoretical limits in terms of performance.

The selected optimum materials and environmental conditions as defined from these parallel studies will be integrated into a PEC cell prototype. This design will include ion exchange membranes and gas diffusion electrodes for product separation. Performance will be validated in real working conditions under sun irradiation to assess the technological and industrial relevance of our A-LEAF cell.
000822000 909CO $$ooai:juser.fz-juelich.de:822000$$pauthority$$pauthority:GRANT
000822000 970__ $$aoai:dnet:corda__h2020::0d4fe81ceeca15614410bee122b17c57
000822000 980__ $$aG
000822000 980__ $$aCORDIS
000822000 980__ $$aAUTHORITY