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We discuss scale setting in the context of 2+1 dynamical fermion simulations where we approach

the physical point in the quark mass plane keeping the average quark mass constant. We have

simulations at four beta values, and after determining the paths and lattice spacings, we give an

estimation of the phenomenological values of various Wilson flow scales.
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1. Singlet quantities

Numerical lattice QCD simulations determine mass (or other) ratios but not the scale itself,

which has to be determined from experiment. A hadron mass such as the proton mass or decay

constant such as the pion decay constant are often used for this purpose. We discuss here the ad-

vantages of setting the scale using a flavour-singlet quantity, which in conjunction with simulations

keeping the average quark mass constant allow SU(3) flavour breaking expansions to be used. This

is illustrated using 2+1 flavour clover fermions, and in addition a determination of the Wilson flow

scales,

√

t
exp
0 and w

exp
0 is given.

This talk is based on [1], where further details can be found.

Dynamical simulations start with some values of the quark masses and then extrapolate along

some path in (u,d,s) space1 to the physical point. The strategy we have adopted here, [2, 3] is to

start at a point on the SU(3) flavour symmetric line, when all the quark masses are equal

(m0,m0,m0)→ (m∗
u,m

∗
d,m

∗
s ) , (1.1)

and to keep the singlet quark mass m constant

m=
1

3
(mu+md+ms) = const. ≡ m0 . (1.2)

This allows an SU(3)F flavour symmetry breaking expansion for masses and matrix elements. The

expansion parameter is naturally the distance from the SU(3) flavour plane, parametrised by

δmq = mq−m . (1.3)

This has the trivial constraint

δmu+δmd+δms = 0 . (1.4)

The expansion coefficients are functions of m only so provided m is kept constant they remain

unaltered whether we have mass degenerate u and d quarks or not. This opens the possibility of

determining isospin breaking quantities from just 2+ 1 simulations. The plane (or path) is called

‘unitary’ if we expand in both the same sea and valence quarks masses.

Consider now a flavour singlet quantity XS(mu,md ,ms) which by definition is invariant under

u, d, s permutations. This has a stationary point about the SU(3) flavour symmetric line. For upon

expanding a flavour singlet quantity about a point on the SU(3)-flavour line we have

XS(m+δmu,m+δmd,m+δms)

= XS(m,m,m)+
∂XS
∂mu

∣

∣

∣

∣

0

δmu+
∂XS
∂md

∣

∣

∣

∣

0

δmd+
∂XS
∂ms

∣

∣

∣

∣

0

δms+O((δmq)
2) . (1.5)

However on this line all the above derivatives are equal and thus we have

XS(m+δmu,m+δmd,m+δms) = XS(m,m,m)+O((δmq)
2) . (1.6)

1Practically we consider mass degenerate u and d quarks, when mu = md ≡ ml but the discussion here is more

general.
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There are many possibilities for singlet quantities. Using hadronic masses we have, for example

X2
N = 1

6
(M2
p+M

2
n +M

2
Σ+ +M2

Σ− +M2
Ξ0 +M

2
Ξ−) = (1.1610GeV)2

X2
π = 1

6
(M2
K+ +M

2
K0 +M

2
π+ +M2

π− +M2

K
0 +M

2
K−) = (0.4116GeV)2

X2
ρ = 1

6
(M2
K∗+ +M

2
K∗0 +M

2
ρ+ +M2

ρ− +M2

K
∗0 +M

2
K∗−) = (0.8562GeV)2 , (1.7)

for octet baryons, pseudoscalar octet mesons and vector octet mesons respectively. Another baryon

octet possibilty is X2
Λ = 1

2
(M2

Σ+M
2
Λ) but other singlet quantities can be constructed using the baryon

decuplet. Alternatively gluonic quantities can be used such as the ‘Force’ scale X2
r0
= 1/r20 or the

Wilson flow scales, introduced by Lüscher

X2
t0
=

1

t0
, X2

w0
=

1

w2
0

, (1.8)

(see e.g. [4, 5]). These are all ‘secondary scales’, their physical value has to be determined.

The stationary point of XS can be checked, using the Gell-Mann–Okubo SU(3) flavour break-

ing expansion. For example for the pseudoscalar octet mesons we have the expansion

M2
π+(=M2

π−) = M2
0π +απ(δmu+δmd)+O((δmq)

2)

M2
K+(=M

2
K−) = M2

0π +απ(δmu+δms)+O((δmq)
2)

M2
K0(=M

2

K
0) = M2

0π +απ(δmd+δms)+O((δmq)
2) . (1.9)

Constructing X2
π gives immediately the result of eq. (1.5). Another check is to use χ-PT (assuming

that it is valid in the neighbourhood of the SU(3) flavour plane/line). Simply choose your favourite

χ-PT result and expand about a SU(3) flavour symmetric line/point. For example in [6], the chiral

expansion for t0 (for mass degenerate u and d quarks) can be manipulated [1] to give

t0 = T (χ)

[

1+
1

(4π f0)4
(5

6
k2 +

1
4
k′′5)(χs− χl)

2 + · · ·
]

, (1.10)

where T is a (known) function of χ ≡ 1/3(2χl + χs) only. As (χs− χl) ∝ (δms− δml) then this

agrees with our previous assertion: there is no linear term, the first term is quadratic in SU(3)

flavour symmetry breaking.

2. Lattice matters

We have generated 2+1 flavour gauge configurations using an action consisting of tree level

Symanzik glue and a mildy stout smeared O(a) non-perturbatively improved clover action, [7],

at four-β values, β = 5.40,5.50,5.65,5.80 on a variety of lattice sizes 243 × 48, 323 × 64 and

483 × 96. All box sizes have L ∼> 2fm. All the pion masses used have MπL > 4 and range from

about 500 to 220MeV. They are either at points on the SU(3) flavour symmetric line or along lines

of constant m. This gives 21 data sets at our disposal.

The quark mass mq and δmq are given by

mq =
1

2

(

1

κq
− 1

κ0c

)

, δmq = mq−m=
1

2

(

1

κq
− 1

κ0

)

, (2.1)
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Figure 1: Top to bottom (X lat
S )2 for S = t0 (circles), N (right triangles), w0 (squares), ρ (left triangles)

and π (up triangles) for (β ,κ0) = (5.50,0.120900) (left panel) and (β ,κ0) = (5.50,0.120950) (right panel)

together with constant fits. The opaque points have MπL < 4 and are not included in the fits. The vertical

line represents the physical point.

where κ0c is chiral limit along symmetric line. (Note that this cancels in δmq.)

We first investigate the constancy of singlet quantities, as given in eq. (1.6). In Fig. 1 we plot

(X lat
S )2 for S = t0, N , w0, ρ and π for (β ,κ0) = (5.50,0.120900), (5.50,0.120950). As expected,

in agreement with the discussion of section 1, the X2
S singlet quantities are constant.

We now take XS = const. to determine the scale

a2
S(κ0) =

X lat2
S (κ0)

X
exp 2
S

. (2.2)

This is a function of m0 or here κ0. So if we vary κ0 (for example as in Fig. 1) – when pairs aS, aS′

cross this gives a common lattice spacing a. We apply this in particular here to2

(S,S′) = (π,N), (π,ρ) . (2.3)

For S = t0, w0 we can arrange X
exp
t0

, X
exp
w0 (from eq. (2.2)) so that these singlet quantities also cross

at the same point. In Fig. 2 we show these crossings for β = 5.50. From the results for the four beta

values we can now make the last, continuum extrapolation. This is shown in Fig. 3. A (weighted)

average of these results gives our final estimates for

√

t
exp
0 , w

exp
0 as found in [1].

Alternatively we can write

2M2
K −M2

π

X2
S

=C−2
M2

π

X2
S

, (2.4)

(C = X2
π/X

2
S ) for S = N,ρ , t0,w0. In Fig. 4 we plot this function for (β ,κ0) = (5.50,0.120900),

2For the β and pion mass values considered here, the ρ and K∗ are stable particles.
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Figure 2: a2
S against 1/κ0 for S = π , N and t0, w0 together with quadratic fits for β = 5.50. Left panel:

based on (π ,N) crossing; Right panel: based on (π ,ρ) crossing.

0.0000 0.0025 0.0050 0.0075

a
2
 [fm

2
]

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

t 0

1
/2
, 

w
0
 [

fm
]

t
0

1/2

w
0

(π,N)

0.0000 0.0025 0.0050 0.0075

a
2
 [fm

2
]

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20
t 0

1
/2
, 

w
0
 [

fm
]

t
0

1/2

w
0

(π,ρ)

Figure 3:
√
t0 and w0 (in fm) against a2 (in fm2) from the (π ,N) crossing (left panel) and (π ,ρ) (right

panel) crossing together with a linear fit.
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Figure 4: (2M2
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π)/X
2
S againstM2

π/X
2
S , together with the fit from eq. (2.4) for (β ,κ0) = (5.50,0.120900)

(left panel) and (5.50,0.120950) (right panel). The stars correspond to the phenomenological values.
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(5.50,0.120950). This represents the path in the quark mass plane. Also shown are the experimen-

tal values (now including those of S= t0, w0). We see that these κ0 values straddle the optimum κ∗
0

– it is clear that κ∗
0 lies closer to 0.120950 than 0.120900.

Finally we comment on our results. In the left panel of Fig. 5 we plot a2 against g2
0. The curve
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2
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g
0
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1
/κ

0

*

Figure 5: Left panel: a2 versus g2
0. The curve is from the running coupling constant, using the 2-loop

beta function normalised to the β = 5.80 result. Right panel: 1/κ∗
0 versus g2

0. The horizontal dashed lines

represents the value in the continuum limit.

is the running coupling constant, g2
0 = 10/β using the 2-loop QCD beta function, normalised to

β = 5.80, namely

a2(β )

a2(β0)
=

(

β0

β

)− b1
b2

0
exp

(

− 1

10b0

(β −β0)

)

, β0 = 5.80 , (2.5)

(b0, b1 are the first two coefficients of the beta function). There seems to be reasonable agreement

between the data points and the curve. The right hand panel of Fig. 5 indicates how the initial point,

κ∗
0 , on the SU(3) flavour symmetric line changes with g2

0.

3. Conclusions

Our programme is to tune strange and light quark masses to their physical values simultane-

ously by keeping m = 1/3(2ml +ms) = const.. As the light quark mass is decreased then Mπ ց
and MK ր. Singlet quantities, here denoted by XS(κ0) remain constant starting from a point on

the SU(3) flavour symmetric line — the Gell-Mann–Okubo result. We can use this result and

X
exp
S to determine the aS(κ0) scale. Varying κ0 – determines when pairs of singlet quantities such

as (Xπ ,XN) and (Xπ ,Xρ) cross giving a common lattice spacing a. By arranging so that Xt0 , Xw0

also cross here, we are able to give a determination of the ‘secondary’ scales

√

t
exp
0 and w

exp
0 [fm].

Finally in Fig. 6 a comparison with other results is given.
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