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We discuss scale setting in the context of 2+1 dynamical fermion simulations where we approach
the physical point in the quark mass plane keeping the average quark mass constant. We have
simulations at four beta values, and after determining the paths and lattice spacings, we give an
estimation of the phenomenological values of various Wilson flow scales.
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1. Singlet quantities

Numerical lattice QCD simulations determine mass (or other) ratios but not the scale itself,
which has to be determined from experiment. A hadron mass such as the proton mass or decay
constant such as the pion decay constant are often used for this purpose. We discuss here the ad-
vantages of setting the scale using a flavour-singlet quantity, which in conjunction with simulations
keeping the average quark mass constant allow SU (3) flavour breaking expansions to be used. This
is illustrated using 2+ 1 flavour clover fermions, and in addition a determination of the Wilson flow
scales, \/thp and ngp is given.

This talk is based on [1], where further details can be found.

Dynamical simulations start with some values of the quark masses and then extrapolate along
some path in (u,d,s) space! to the physical point. The strategy we have adopted here, [2, 3] is to
start at a point on the SU (3) flavour symmetric line, when all the quark masses are equal

(m07m07m0)_>(m;:7m:}7m:)7 (11)
and to keep the singlet quark mass 7 constant
m= 3 (my +mg +my) = const. = my. (1.2)

This allows an SU (3)r flavour symmetry breaking expansion for masses and matrix elements. The
expansion parameter is naturally the distance from the SU (3) flavour plane, parametrised by

Omg =mgy —m. (1.3)
This has the trivial constraint
omy, +06my+ dmy;=0. (1.4)

The expansion coefficients are functions of 7 only so provided m is kept constant they remain
unaltered whether we have mass degenerate u and d quarks or not. This opens the possibility of
determining isospin breaking quantities from just 2+ 1 simulations. The plane (or path) is called
‘unitary’ if we expand in both the same sea and valence quarks masses.

Consider now a flavour singlet quantity Xg(m,,m4,ms) which by definition is invariant under
u, d, s permutations. This has a stationary point about the SU (3) flavour symmetric line. For upon
expanding a flavour singlet quantity about a point on the SU (3)-flavour line we have

Xs(m+ dmy,m+ dmg, m+ dmy)
a%s
om,

om, + %
0 amd

= Xg(m,m,m) +
( ) . am.

Sms+0((8my)?). (1.5)
0

However on this line all the above derivatives are equal and thus we have

Xs (7 + Smy, i+ Smg, M+ Smy) = Xs(,m,m) + O((8my)?). (1.6)

IPractically we consider mass degenerate u and d quarks, when m, = my = m; but the discussion here is more
general.
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There are many possibilities for singlet quantities. Using hadronic masses we have, for example

Xy = LMy + My + M3+ Mg +Mz+Mz ) =(1.1610GeV)?
X2 = L(ME. + M2+ M2+ M2+ M2+ M2 ) = (0.4116GeV)’
X2 = L(MRs + Mo+ M3, + M2+ M2+ ME. ) = (0.8562GeV)?, (1.7)

for octet baryons, pseudoscalar octet mesons and vector octet mesons respectively. Another baryon
octet possibilty is X7 = % (M% +M/2\) but other singlet quantities can be constructed using the baryon
decuplet. Alternatively gluonic quantities can be used such as the ‘Force’ scale X,z0 =1/ r(z) or the
Wilson flow scales, introduced by Liischer

1
2 2
X.=—, X, =

o ; (1.8)

O§N| -

(see e.g. [4, 5]). These are all ‘secondary scales’, their physical value has to be determined.
The stationary point of Xg can be checked, using the Gell-Mann—-Okubo SU (3) flavour break-
ing expansion. For example for the pseudoscalar octet mesons we have the expansion

Mz (= Mz-) = My + 0tx(8my + 8mg) +O0((8my)?)
Mg (= Mg-) = Mgy + 0tx(8my + Smy) + O((8my)?)
Mio(= M2) = Mgy + 0 (8mg + 8my) +O((8my)?) . (1.9)

Constructing X2 gives immediately the result of eq. (1.5). Another check is to use x-PT (assuming
that it is valid in the neighbourhood of the SU (3) flavour plane/line). Simply choose your favourite
x-PT result and expand about a SU(3) flavour symmetric line/point. For example in [6], the chiral
expansion for #y (for mass degenerate u# and d quarks) can be manipulated [1] to give
1

to=T7) |1+ =7 Chka+ I s —20)> + -+ 1.10

0=T() +(47rf0)4(6 2+ gks) (s — X))+ (1.10)
where T is a (known) function of ¥ = 1/3 (2y; + xs) only. As (xs— x1) o< (6ms — dmy) then this
agrees with our previous assertion: there is no linear term, the first term is quadratic in SU(3)
flavour symmetry breaking.

2. Lattice matters

We have generated 2+ 1 flavour gauge configurations using an action consisting of tree level
Symanzik glue and a mildy stout smeared O(a) non-perturbatively improved clover action, [7],
at four-f values, B = 5.40,5.50,5.65,5.80 on a variety of lattice sizes 243 x 48, 32° x 64 and
483 x 96. All box sizes have L > 2fm. All the pion masses used have ML > 4 and range from
about 500 to 220MeV. They are either at points on the SU (3) flavour symmetric line or along lines
of constant 7. This gives 21 data sets at our disposal.

The quark mass m, and 8m,, are given by

1/1 1 1/1 1
m,o=— | —— — om, =m,—m—=— | —— — 2.1
a 2<Kq KOC>’ a a 2<Kq KO)’ 2.1
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Figure 1: Top to bottom (X;*“)2 for S = 1o (circles), N (right triangles), wg (squares), p (left triangles)
and 7 (up triangles) for (B, ko) = (5.50,0.120900) (left panel) and (B, kp) = (5.50,0.120950) (right panel)
together with constant fits. The opaque points have M;L < 4 and are not included in the fits. The vertical
line represents the physical point.

where K is chiral limit along symmetric line. (Note that this cancels in dm,.)

We first investigate the constancy of singlet quantities, as given in eq. (1.6). In Fig. 1 we plot
(X2 for S = to, N, wo, p and 7 for (B, %) = (5.50,0.120900), (5.50,0.120950). As expected,
in agreement with the discussion of section 1, the ng singlet quantities are constant.

We now take Xg = const. to determine the scale

XlatZ(K.O)

2 S

aS(KO) = exp 2
XS

(2.2)

This is a function of mg or here ky. So if we vary kp (for example as in Fig. 1) — when pairs ag, ag
cross this gives a common lattice spacing a. We apply this in particular here to?

(S,S/):(TC,N),(TC,[)). (2.3)

For § =1y, wy we can arrange X;Xp, Xf;ﬁp (from eq. (2.2)) so that these singlet quantities also cross
at the same point. In Fig. 2 we show these crossings for § = 5.50. From the results for the four beta
values we can now make the last, continuum extrapolation. This is shown in Fig. 3. A (weighted)
average of these results gives our final estimates for thp , wSXp as found in [1].

Alternatively we can write

2MZ — M3 M2
K Tr _ oz 2.4
X2 X2 2.4

(C =X2/X3) for S =N,p,t5,wo. In Fig. 4 we plot this function for (8, k) = (5.50,0.120900),

ZFor the B and pion mass values considered here, the p and K* are stable particles.
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Figure 2: agw against 1/kp for S = m, N and #), wy together with quadratic fits for § = 5.50.
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Figure 3: /7 and wy (in fm) against a” (in fm?) from the (7,N) crossing (left panel) and (7,p) (right

panel) crossing together with a linear fit.
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Figure 4: (2Mz —M2)/X? against M2 /X2, together with the fit from eq. (2.4) for (B8, ko) = (5.50,0.120900)
(left panel) and (5.50,0.120950) (right panel). The stars correspond to the phenomenological values.
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(5.50,0.120950). This represents the path in the quark mass plane. Also shown are the experimen-
tal values (now including those of § = 7y, wg). We see that these Ky values straddle the optimum &
— it is clear that Ky lies closer to 0.120950 than 0.120900.

Finally we comment on our results. In the left panel of Fig. 5 we plot a® against g%. The curve
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Figure 5: Left panel: a® versus g%. The curve is from the running coupling constant, using the 2-loop
beta function normalised to the = 5.80 result. Right panel: 1/x versus g(z). The horizontal dashed lines
represents the value in the continuum limit.

is the running coupling constant, g(z) = 10/ using the 2-loop QCD beta function, normalised to
B = 5.80, namely

b

Z;((go)) = (%) L exp <_%bo B —130)> ,  Bo=5.80, (2.5)

(bg, by are the first two coefficients of the beta function). There seems to be reasonable agreement

between the data points and the curve. The right hand panel of Fig. 5 indicates how the initial point,
K5, on the SU (3) flavour symmetric line changes with g3.

3. Conclusions

Our programme is to tune strange and light quark masses to their physical values simultane-
ously by keeping 7 = 1/3(2m; + m;) = const.. As the light quark mass is decreased then My
and Mg . Singlet quantities, here denoted by Xs(kp) remain constant starting from a point on
the SU(3) flavour symmetric line — the Gell-Mann—Okubo result. We can use this result and
X;Xp to determine the ag(kp) scale. Varying xp — determines when pairs of singlet quantities such
as (Xz,Xy) and (Xz,X,) cross giving a common lattice spacing a. By arranging so that X;;, X,

also cross here, we are able to give a determination of the ‘secondary’ scales /75" and w; " [fm].
Finally in Fig. 6 a comparison with other results is given.
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Figure 6: \/1;"", left plot and wy ', right plot in fm for BMW 12 [5], HotQCD 14 [8], RBC-UKQCD 14
[9], together with the present results.
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