000823831 001__ 823831
000823831 005__ 20210129224848.0
000823831 0247_ $$2doi$$a10.1109/HiPC.2015.24
000823831 0247_ $$2WOS$$aWOS:000380619900022
000823831 037__ $$aFZJ-2016-06471
000823831 041__ $$aEnglish
000823831 1001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b0$$eCorresponding author$$ufzj
000823831 1112_ $$a2015 IEEE 22nd International Conference on High Performance Computing (HiPC)$$cBengaluru$$d12/16/2015 - 12/19/2015$$wIndia
000823831 245__ $$aA Performance Model for GPU-Accelerated FDTD Applications
000823831 260__ $$bIEEE$$c2015
000823831 29510 $$a2015 IEEE 22nd International Conference on High Performance Computing (HiPC) : [Proceedings] - IEEE, 2015. - ISBN 978-1-4673-8488-9
000823831 300__ $$a185 - 193
000823831 3367_ $$2ORCID$$aCONFERENCE_PAPER
000823831 3367_ $$033$$2EndNote$$aConference Paper
000823831 3367_ $$2BibTeX$$aINPROCEEDINGS
000823831 3367_ $$2DRIVER$$aconferenceObject
000823831 3367_ $$2DataCite$$aOutput Types/Conference Paper
000823831 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1479798545_4742
000823831 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000823831 520__ $$aIn this work we develop, validate and use a performance model for a Finite-Difference Time-Domain (FDTD) application which is parallelized on multiple GPUs. FDTD is a method for simulating electrodynamic interaction and is applied in a number of research and engineering areas. In this work we focus on a particular implementation called B-CALM (Belgium-California Light Machine). We adopt a simple, semi-empirical modelling approach to design a model which we validate for different hardware architectures. Using the model allows making implementation decisions and exploring the architectural design space with the goal of optimizing HPC systems for this application.
000823831 536__ $$0G:(DE-HGF)POF3-513$$a513 - Supercomputer Facility (POF3-513)$$cPOF3-513$$fPOF III$$x0
000823831 588__ $$aDataset connected to CrossRef Conference
000823831 7001_ $$0P:(DE-Juel1)176815$$aHater, Thorsten$$b1$$ufzj
000823831 7001_ $$0P:(DE-Juel1)137023$$aKraus, Jiri$$b2$$ufzj
000823831 7001_ $$0P:(DE-Juel1)144441$$aPleiter, Dirk$$b3$$ufzj
000823831 7001_ $$0P:(DE-HGF)0$$aWahl, Pierre$$b4
000823831 773__ $$a10.1109/HiPC.2015.24
000823831 8564_ $$uhttps://juser.fz-juelich.de/record/823831/files/07397633.pdf$$yRestricted
000823831 8564_ $$uhttps://juser.fz-juelich.de/record/823831/files/07397633.gif?subformat=icon$$xicon$$yRestricted
000823831 8564_ $$uhttps://juser.fz-juelich.de/record/823831/files/07397633.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823831 8564_ $$uhttps://juser.fz-juelich.de/record/823831/files/07397633.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823831 8564_ $$uhttps://juser.fz-juelich.de/record/823831/files/07397633.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823831 8564_ $$uhttps://juser.fz-juelich.de/record/823831/files/07397633.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823831 909CO $$ooai:juser.fz-juelich.de:823831$$pVDB
000823831 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000823831 9141_ $$y2016
000823831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b0$$kFZJ
000823831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136869$$aForschungszentrum Jülich$$b1$$kFZJ
000823831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137023$$aForschungszentrum Jülich$$b2$$kFZJ
000823831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144441$$aForschungszentrum Jülich$$b3$$kFZJ
000823831 9131_ $$0G:(DE-HGF)POF3-513$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vSupercomputer Facility$$x0
000823831 920__ $$lyes
000823831 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000823831 980__ $$acontrib
000823831 980__ $$aVDB
000823831 980__ $$aUNRESTRICTED
000823831 980__ $$acontb
000823831 980__ $$aI:(DE-Juel1)JSC-20090406