000823849 001__ 823849
000823849 005__ 20240712100835.0
000823849 0247_ $$2doi$$a10.5194/acp-16-9983-2016
000823849 0247_ $$2ISSN$$a1680-7316
000823849 0247_ $$2ISSN$$a1680-7324
000823849 0247_ $$2Handle$$a2128/12929
000823849 0247_ $$2WOS$$aWOS:000383144600002
000823849 0247_ $$2altmetric$$aaltmetric:10343669
000823849 037__ $$aFZJ-2016-06489
000823849 082__ $$a550
000823849 1001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b0$$eCorresponding author$$ufzj
000823849 245__ $$aSatellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings
000823849 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000823849 3367_ $$2DRIVER$$aarticle
000823849 3367_ $$2DataCite$$aOutput Types/Journal article
000823849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479731061_8095
000823849 3367_ $$2BibTeX$$aARTICLE
000823849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823849 3367_ $$00$$2EndNote$$aJournal Article
000823849 520__ $$aSudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing.We investigate the boreal winters from 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before or around the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when the wind has reversed from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward-directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and meridional shape of the background wind field, indicating that a pure zonal average view sometimes is a too strong simplification for the strongly perturbed conditions during the evolution of SSWs.
000823849 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000823849 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000823849 588__ $$aDataset connected to CrossRef
000823849 7001_ $$0P:(DE-HGF)0$$aTrinh, Quang Thai$$b1
000823849 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b2$$ufzj
000823849 7001_ $$0P:(DE-Juel1)165731$$aKrisch, Isabell$$b3$$ufzj
000823849 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b4$$ufzj
000823849 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b5$$ufzj
000823849 7001_ $$0P:(DE-Juel1)156366$$aZhu, Yajun$$b6$$ufzj
000823849 7001_ $$0P:(DE-HGF)0$$aGille, John C.$$b7
000823849 7001_ $$0P:(DE-HGF)0$$aMlynczak, Martin G.$$b8
000823849 7001_ $$0P:(DE-HGF)0$$aRussell III, James M.$$b9
000823849 7001_ $$0P:(DE-HGF)0$$aSchwartz, Michael J.$$b10
000823849 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b11$$ufzj
000823849 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-9983-2016$$gVol. 16, no. 15, p. 9983 - 10019$$n15$$p9983 - 10019$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000823849 8564_ $$uhttps://juser.fz-juelich.de/record/823849/files/acp-16-9983-2016.pdf$$yOpenAccess
000823849 8564_ $$uhttps://juser.fz-juelich.de/record/823849/files/acp-16-9983-2016.gif?subformat=icon$$xicon$$yOpenAccess
000823849 8564_ $$uhttps://juser.fz-juelich.de/record/823849/files/acp-16-9983-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000823849 8564_ $$uhttps://juser.fz-juelich.de/record/823849/files/acp-16-9983-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000823849 8564_ $$uhttps://juser.fz-juelich.de/record/823849/files/acp-16-9983-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000823849 8564_ $$uhttps://juser.fz-juelich.de/record/823849/files/acp-16-9983-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000823849 8767_ $$92016-10-19$$d2016-10-19$$eAPC$$jZahlung erfolgt$$pacp-2016-276
000823849 909CO $$ooai:juser.fz-juelich.de:823849$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b0$$kFZJ
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b2$$kFZJ
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165731$$aForschungszentrum Jülich$$b3$$kFZJ
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b4$$kFZJ
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b5$$kFZJ
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156366$$aForschungszentrum Jülich$$b6$$kFZJ
000823849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b11$$kFZJ
000823849 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000823849 9141_ $$y2016
000823849 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000823849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823849 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000823849 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000823849 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000823849 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000823849 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823849 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823849 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000823849 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000823849 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823849 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000823849 9801_ $$aFullTexts
000823849 980__ $$ajournal
000823849 980__ $$aVDB
000823849 980__ $$aUNRESTRICTED
000823849 980__ $$aI:(DE-Juel1)IEK-7-20101013
000823849 980__ $$aAPC
000823849 981__ $$aI:(DE-Juel1)ICE-4-20101013