001     823850
005     20210129224853.0
024 7 _ |a 10.1016/j.bpj.2016.08.051
|2 doi
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
024 7 _ |a WOS:000386594800014
|2 WOS
024 7 _ |a altmetric:13313837
|2 altmetric
024 7 _ |a pmid:27806274
|2 pmid
037 _ _ |a FZJ-2016-06490
082 _ _ |a 570
100 1 _ |a Bronder, Anna M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Oriented Membrane Protein Reconstitution into Tethered Lipid Membranes for AFM Force Spectroscopy
260 _ _ |a Cambridge, Mass.
|c 2016
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479731628_8100
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Membrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bieker, Adeline
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Elter, Shantha
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Etzkorn, Manuel
|0 P:(DE-Juel1)156341
|b 3
700 1 _ |a Häussinger, Dieter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Oesterhelt, Filipp
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.bpj.2016.08.051
|g Vol. 111, no. 9, p. 1925 - 1934
|0 PERI:(DE-600)1477214-0
|n 9
|p 1925 - 1934
|t Biophysical journal
|v 111
|y 2016
|x 0006-3495
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/823850/files/Oriented%20Membrane%20Protein%20Reconstitution%20into%20Tethered%20Lipid%20Membranes%20for%20AFM%20Force%20Spectroscopy_2016.pdf
856 4 _ |y Restricted
|x icon
|u https://juser.fz-juelich.de/record/823850/files/Oriented%20Membrane%20Protein%20Reconstitution%20into%20Tethered%20Lipid%20Membranes%20for%20AFM%20Force%20Spectroscopy_2016.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|u https://juser.fz-juelich.de/record/823850/files/Oriented%20Membrane%20Protein%20Reconstitution%20into%20Tethered%20Lipid%20Membranes%20for%20AFM%20Force%20Spectroscopy_2016.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|u https://juser.fz-juelich.de/record/823850/files/Oriented%20Membrane%20Protein%20Reconstitution%20into%20Tethered%20Lipid%20Membranes%20for%20AFM%20Force%20Spectroscopy_2016.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|u https://juser.fz-juelich.de/record/823850/files/Oriented%20Membrane%20Protein%20Reconstitution%20into%20Tethered%20Lipid%20Membranes%20for%20AFM%20Force%20Spectroscopy_2016.jpg?subformat=icon-640
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/823850/files/Oriented%20Membrane%20Protein%20Reconstitution%20into%20Tethered%20Lipid%20Membranes%20for%20AFM%20Force%20Spectroscopy_2016.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:823850
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156341
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21