000823855 001__ 823855
000823855 005__ 20210129224854.0
000823855 0247_ $$2doi$$a10.1515/hsz-2016-0224
000823855 0247_ $$2ISSN$$a1431-6730
000823855 0247_ $$2ISSN$$a1437-4315
000823855 0247_ $$2WOS$$aWOS:000387888700014
000823855 0247_ $$2Handle$$a2128/20694
000823855 0247_ $$2altmetric$$aaltmetric:19856707
000823855 0247_ $$2pmid$$apmid:27451995
000823855 037__ $$aFZJ-2016-06495
000823855 041__ $$aEnglish
000823855 082__ $$a540
000823855 1001_ $$0P:(DE-Juel1)161140$$aViegas, Aldino$$b0
000823855 245__ $$aThe power, pitfalls and potential of the nanodisc system for NMR-based studies
000823855 260__ $$aBerlin [u.a.]$$bde Gruyter$$c2016
000823855 29510 $$aBiological Chemistry
000823855 300__ $$a1335-1354
000823855 3367_ $$2ORCID$$aBOOK_CHAPTER
000823855 3367_ $$07$$2EndNote$$aBook Section
000823855 3367_ $$2DRIVER$$abookPart
000823855 3367_ $$2BibTeX$$aINBOOK
000823855 3367_ $$2DataCite$$aOutput Types/Book chapter
000823855 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1479731926_8095
000823855 4900_ $$v397
000823855 520__ $$aMembrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors.
000823855 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000823855 588__ $$aDataset connected to CrossRef
000823855 7001_ $$0P:(DE-Juel1)161253$$aViennet, Thibault$$b1$$ufzj
000823855 7001_ $$00000-0002-9796-3246$$aEtzkorn, Manuel$$b2$$eCorresponding author
000823855 773__ $$0PERI:(DE-600)1466062-3$$a10.1515/hsz-2016-0224$$gVol. 397, no. 12$$x1437-4315$$y2016
000823855 8564_ $$uhttps://juser.fz-juelich.de/record/823855/files/%5BBiological%20Chemistry%5D%20The%20power%20pitfalls%20and%20potential%20of%20the%20nanodisc%20system%20for%20NMR-based%20studies.pdf$$yOpenAccess
000823855 909CO $$ooai:juser.fz-juelich.de:823855$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000823855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161140$$aForschungszentrum Jülich$$b0$$kFZJ
000823855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161253$$aForschungszentrum Jülich$$b1$$kFZJ
000823855 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000823855 9141_ $$y2016
000823855 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823855 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000823855 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000823855 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL CHEM : 2015
000823855 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823855 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823855 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823855 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000823855 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000823855 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000823855 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823855 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000823855 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000823855 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823855 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000823855 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823855 920__ $$lyes
000823855 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000823855 9801_ $$aFullTexts
000823855 980__ $$acontb
000823855 980__ $$aVDB
000823855 980__ $$aUNRESTRICTED
000823855 980__ $$aI:(DE-Juel1)ICS-6-20110106
000823855 981__ $$aI:(DE-Juel1)IBI-7-20200312