000823862 001__ 823862
000823862 005__ 20210129224855.0
000823862 0247_ $$2doi$$a10.5194/gmd-9-3483-2016
000823862 0247_ $$2ISSN$$a1991-959X
000823862 0247_ $$2ISSN$$a1991-9603
000823862 0247_ $$2Handle$$a2128/12940
000823862 0247_ $$2WOS$$aWOS:000385386000001
000823862 037__ $$aFZJ-2016-06502
000823862 082__ $$a910
000823862 1001_ $$0P:(DE-HGF)0$$aChristou, Michalis$$b0
000823862 245__ $$aEarth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)
000823862 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2016
000823862 3367_ $$2DRIVER$$aarticle
000823862 3367_ $$2DataCite$$aOutput Types/Journal article
000823862 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479800004_4743
000823862 3367_ $$2BibTeX$$aARTICLE
000823862 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823862 3367_ $$00$$2EndNote$$aJournal Article
000823862 520__ $$aWe examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster–Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.
000823862 536__ $$0G:(DE-HGF)POF3-513$$a513 - Supercomputer Facility (POF3-513)$$cPOF3-513$$fPOF III$$x0
000823862 536__ $$0G:(EU-Grant)287530$$aDEEP - Dynamical Exascale Entry Platform (287530)$$c287530$$fFP7-ICT-2011-7$$x1
000823862 588__ $$aDataset connected to CrossRef
000823862 7001_ $$0P:(DE-HGF)0$$aChristoudias, Theodoros$$b1$$eCorresponding author
000823862 7001_ $$0P:(DE-HGF)0$$aMorillo, Julián$$b2
000823862 7001_ $$0P:(DE-Juel1)144660$$aAlvarez, Damian$$b3$$ufzj
000823862 7001_ $$0P:(DE-HGF)0$$aMerx, Hendrik$$b4
000823862 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-9-3483-2016$$gVol. 9, no. 9, p. 3483 - 3491$$n9$$p3483 - 3491$$tGeoscientific model development$$v9$$x1991-9603$$y2016
000823862 8564_ $$uhttps://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.pdf$$yOpenAccess
000823862 8564_ $$uhttps://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.gif?subformat=icon$$xicon$$yOpenAccess
000823862 8564_ $$uhttps://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000823862 8564_ $$uhttps://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000823862 8564_ $$uhttps://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000823862 909CO $$ooai:juser.fz-juelich.de:823862$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000823862 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144660$$aForschungszentrum Jülich$$b3$$kFZJ
000823862 9131_ $$0G:(DE-HGF)POF3-513$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vSupercomputer Facility$$x0
000823862 9141_ $$y2016
000823862 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000823862 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823862 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000823862 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2015
000823862 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000823862 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000823862 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823862 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823862 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000823862 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000823862 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000823862 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000823862 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823862 920__ $$lyes
000823862 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000823862 980__ $$ajournal
000823862 980__ $$aVDB
000823862 980__ $$aUNRESTRICTED
000823862 980__ $$aI:(DE-Juel1)JSC-20090406
000823862 9801_ $$aFullTexts