001     823862
005     20210129224855.0
024 7 _ |a 10.5194/gmd-9-3483-2016
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/12940
|2 Handle
024 7 _ |a WOS:000385386000001
|2 WOS
037 _ _ |a FZJ-2016-06502
082 _ _ |a 910
100 1 _ |a Christou, Michalis
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)
260 _ _ |a Katlenburg-Lindau
|c 2016
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479800004_4743
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster–Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.
536 _ _ |a 513 - Supercomputer Facility (POF3-513)
|0 G:(DE-HGF)POF3-513
|c POF3-513
|f POF III
|x 0
536 _ _ |a DEEP - Dynamical Exascale Entry Platform (287530)
|0 G:(EU-Grant)287530
|c 287530
|f FP7-ICT-2011-7
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Christoudias, Theodoros
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Morillo, Julián
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alvarez, Damian
|0 P:(DE-Juel1)144660
|b 3
|u fzj
700 1 _ |a Merx, Hendrik
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.5194/gmd-9-3483-2016
|g Vol. 9, no. 9, p. 3483 - 3491
|0 PERI:(DE-600)2456725-5
|n 9
|p 3483 - 3491
|t Geoscientific model development
|v 9
|y 2016
|x 1991-9603
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/823862/files/gmd-9-3483-2016.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:823862
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144660
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-513
|2 G:(DE-HGF)POF3-500
|v Supercomputer Facility
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21