000823866 001__ 823866
000823866 005__ 20210129224856.0
000823866 0247_ $$2doi$$a10.1021/acs.jpcb.6b00174
000823866 0247_ $$2ISSN$$a1089-5647
000823866 0247_ $$2ISSN$$a1520-5207
000823866 0247_ $$2ISSN$$a1520-6106
000823866 0247_ $$2WOS$$aWOS:000377841200002
000823866 0247_ $$2altmetric$$aaltmetric:7585275
000823866 0247_ $$2pmid$$apmid:27169334
000823866 037__ $$aFZJ-2016-06506
000823866 082__ $$a530
000823866 1001_ $$0P:(DE-HGF)0$$aOwen, Michael C.$$b0$$eCorresponding author
000823866 245__ $$aRadical Formation Initiates Solvent-Dependent Unfolding and β-Sheet Formation in a Model Helical Peptide
000823866 260__ $$aWashington, DC$$bSoc.$$c2016
000823866 3367_ $$2DRIVER$$aarticle
000823866 3367_ $$2DataCite$$aOutput Types/Journal article
000823866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479800200_4742
000823866 3367_ $$2BibTeX$$aARTICLE
000823866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823866 3367_ $$00$$2EndNote$$aJournal Article
000823866 520__ $$aWe examined the effects of Cα-centered radical formation on the stability of a model helical peptide, N-Ac-KK(AL)10KK-NH2. Three, 100 ns molecular dynamics simulations using the OPLS-AA force field were carried out on each α-helical peptide in six distinct binary TIP4P water/2,2,2-trifluoroethanol (TFE) mixtures. The α-helicity was at a maximum in 20% TFE, which was inversely proportional to the number of H-bonds between water molecules and the peptide backbone. The radial distribution of TFE around the peptide backbone was highest in 20% TFE, which enhanced helix stability. The Cα-centered radical initiated the formation of a turn within 5 ns, which was a smaller kink at high TFE concentrations, and a loop at lower TFE concentrations. The highest helicity of the peptide radical was measured in 100% TFE. The formation of hydrogen bonds between the peptide backbone and water destabilized the helix, whereas the clustering of TFE molecules around the radical center stabilized the helix. Following radical termination, the once helical structure converted to a β-sheet rich state in 100% water only, and this transition did not occur in the nonradical control peptide. This study gives evidence on how the formation of peptide radicals can initiate α-helical to β-sheet transitions under oxidative stress conditions.
000823866 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000823866 588__ $$aDataset connected to CrossRef
000823866 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1
000823866 7001_ $$0P:(DE-HGF)0$$aCsizmadia, Imre G.$$b2
000823866 7001_ $$0P:(DE-HGF)0$$aViskolcz, Béla$$b3
000823866 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.6b00174$$gVol. 120, no. 22, p. 4878 - 4889$$n22$$p4878 - 4889$$tThe @journal of physical chemistry <Washington, DC> / B$$v120$$x1520-5207$$y2016
000823866 8564_ $$uhttps://juser.fz-juelich.de/record/823866/files/Radical%20Formation%20Initiates%20Solvent-Dependent%20Unfolding%20and%20%CE%B2-Sheet%20Formation%20in%20a%20Model%20Helical%20Peptide_2016.pdf$$yRestricted
000823866 8564_ $$uhttps://juser.fz-juelich.de/record/823866/files/Radical%20Formation%20Initiates%20Solvent-Dependent%20Unfolding%20and%20%CE%B2-Sheet%20Formation%20in%20a%20Model%20Helical%20Peptide_2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823866 909CO $$ooai:juser.fz-juelich.de:823866$$pVDB
000823866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b1$$kFZJ
000823866 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000823866 9141_ $$y2016
000823866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823866 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000823866 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000823866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823866 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823866 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000823866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000823866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2015
000823866 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823866 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000823866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823866 920__ $$lyes
000823866 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000823866 980__ $$ajournal
000823866 980__ $$aVDB
000823866 980__ $$aUNRESTRICTED
000823866 980__ $$aI:(DE-Juel1)ICS-6-20110106
000823866 981__ $$aI:(DE-Juel1)IBI-7-20200312