000823899 001__ 823899
000823899 005__ 20210129224901.0
000823899 0247_ $$2doi$$a10.1074/jbc.M116.752121
000823899 0247_ $$2WOS$$aWOS:000391568200011
000823899 0247_ $$2altmetric$$aaltmetric:13372858
000823899 0247_ $$2pmid$$apmid:27815503
000823899 037__ $$aFZJ-2016-06531
000823899 082__ $$a570
000823899 1001_ $$0P:(DE-HGF)0$$aNouri, Kazem$$b0
000823899 245__ $$aIQGAP1 interaction with RHO family proteins revisited: Kinetic and equilibrium evidence for multiple distinct binding sites
000823899 260__ $$aBethesda, Md.$$bSoc.$$c2016
000823899 3367_ $$2DRIVER$$aarticle
000823899 3367_ $$2DataCite$$aOutput Types/Journal article
000823899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484554544_30757
000823899 3367_ $$2BibTeX$$aARTICLE
000823899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823899 3367_ $$00$$2EndNote$$aJournal Article
000823899 520__ $$aIQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity and transmigration. The RHO family proteins CDC42 and RAC1, have been shown to mainly interact with the GAPrelated domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal (CT) domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underly a multiple-step binding mechanism: (i) a high-affinity, GTPdependent binding of RGCT to the switch regions of CDC42 or RAC1, and (ii) a very low-affinity binding of GRD and CT adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses.
000823899 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000823899 7001_ $$0P:(DE-HGF)0$$aFansa, Eyad K.$$b1
000823899 7001_ $$0P:(DE-HGF)0$$aAmin, Ehsan$$b2
000823899 7001_ $$0P:(DE-HGF)0$$aDvorsky, Radovan$$b3
000823899 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b4$$ufzj
000823899 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b5$$ufzj
000823899 7001_ $$0P:(DE-HGF)0$$aSchmitt, Lutz$$b6
000823899 7001_ $$0P:(DE-HGF)0$$aTimson, David J.$$b7
000823899 7001_ $$0P:(DE-HGF)0$$aAhmadian, Mohammad R.$$b8$$eCorresponding author
000823899 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.M116.752121$$p26364-26376$$tThe journal of biological chemistry$$v291$$x0021-9258$$y2016
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.pdf$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.pdf$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.gif?subformat=icon$$xicon$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.gif?subformat=icon$$xicon$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823899 8564_ $$uhttps://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823899 909CO $$ooai:juser.fz-juelich.de:823899$$pVDB
000823899 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823899 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823899 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823899 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2015
000823899 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000823899 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000823899 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823899 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823899 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823899 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823899 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000823899 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000823899 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000823899 9141_ $$y2016
000823899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b4$$kFZJ
000823899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b5$$kFZJ
000823899 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000823899 920__ $$lyes
000823899 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000823899 980__ $$ajournal
000823899 980__ $$aVDB
000823899 980__ $$aI:(DE-Juel1)ICS-6-20110106
000823899 980__ $$aUNRESTRICTED
000823899 981__ $$aI:(DE-Juel1)IBI-7-20200312