001     823899
005     20210129224901.0
024 7 _ |a 10.1074/jbc.M116.752121
|2 doi
024 7 _ |a WOS:000391568200011
|2 WOS
024 7 _ |a altmetric:13372858
|2 altmetric
024 7 _ |a pmid:27815503
|2 pmid
037 _ _ |a FZJ-2016-06531
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Nouri, Kazem
|b 0
245 _ _ |a IQGAP1 interaction with RHO family proteins revisited: Kinetic and equilibrium evidence for multiple distinct binding sites
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1484554544_30757
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity and transmigration. The RHO family proteins CDC42 and RAC1, have been shown to mainly interact with the GAPrelated domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal (CT) domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underly a multiple-step binding mechanism: (i) a high-affinity, GTPdependent binding of RGCT to the switch regions of CDC42 or RAC1, and (ii) a very low-affinity binding of GRD and CT adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses.
536 _ _ |0 G:(DE-HGF)POF3-551
|a 551 - Functional Macromolecules and Complexes (POF3-551)
|c POF3-551
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Fansa, Eyad K.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Amin, Ehsan
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Dvorsky, Radovan
|b 3
700 1 _ |0 P:(DE-Juel1)145165
|a Gremer, Lothar
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)132029
|a Willbold, Dieter
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Schmitt, Lutz
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Timson, David J.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Ahmadian, Mohammad R.
|b 8
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1474604-9
|a 10.1074/jbc.M116.752121
|p 26364-26376
|t The journal of biological chemistry
|v 291
|x 0021-9258
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/IQGAP1%20interaction%20with%20RHO%20family%20proteins%20revisited%3A%20Kinetic%20and%20equilibrium%20evidence%20for%20multiple%20distinct%20binding%20sites_2016.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823899/files/J.%20Biol.%20Chem.-2016-Nouri-26364-76-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:823899
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145165
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132029
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J BIOL CHEM : 2015
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21