000823944 001__ 823944
000823944 005__ 20210129224910.0
000823944 0247_ $$2doi$$a10.1021/acs.biochem.6b00818
000823944 0247_ $$2ISSN$$a0006-2960
000823944 0247_ $$2ISSN$$a1520-4995
000823944 0247_ $$2WOS$$aWOS:000389557300012
000823944 037__ $$aFZJ-2016-06572
000823944 082__ $$a570
000823944 1001_ $$0P:(DE-HGF)0$$aShi, Jie$$b0
000823944 245__ $$aAn Atypical α/β-Hydrolase Fold Revealed in the Crystal Structure of Pimeloyl-Acyl Carrier Protein Methyl Esterase BioG from Haemophilus influenzae
000823944 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2016
000823944 3367_ $$2DRIVER$$aarticle
000823944 3367_ $$2DataCite$$aOutput Types/Journal article
000823944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484399516_17627
000823944 3367_ $$2BibTeX$$aARTICLE
000823944 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823944 3367_ $$00$$2EndNote$$aJournal Article
000823944 520__ $$aPimeloyl-acyl carrier protein (ACP) methyl esterase is an α/β-hydrolase that catalyzes the last biosynthetic step of pimeloyl-ACP, a key intermediate in biotin biosynthesis. Intriguingly, multiple nonhomologous isofunctional forms of this enzyme that lack significant sequence identity are present in diverse bacteria. One such esterase, Escherichia coli BioH, has been shown to be a typical α/β-hydrolase fold enzyme. To gain further insights into the role of this step in biotin biosynthesis, we have determined the crystal structure of another widely distributed pimeloyl-ACP methyl esterase, Haemophilus inf luenzae BioG, at 1.26 Å. The BioG structure is similar to the BioH structure and is composed of an α-helical lid domain and a core domain that contains a central sevenstranded β-pleated sheet. However, four of the six α-helices that flank both sides of the BioH core β-sheet are replaced with long loops in BioG, thus forming an unusual α/β-hydrolase fold. This structural variation results in a significantly decreased thermal stability of the enzyme. Nevertheless, the lid domain and the residues at the lid−core interface are well conserved between BioH and BioG, in which an analogous hydrophobic pocket for pimelate binding as well as similar ionic interactions with the ACP moiety are retained. Biochemical characterization of sitedirected mutants of the residues hypothesized to interact with the ACP moiety supports a similar substrate interaction mode for the two enzymes. Consequently, these enzymes package the identical catalytic function under a considerably different protein surface.
000823944 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000823944 588__ $$aDataset connected to CrossRef
000823944 7001_ $$0P:(DE-HGF)0$$aCao, Xinyun$$b1
000823944 7001_ $$0P:(DE-HGF)0$$aChen, Yaozong$$b2
000823944 7001_ $$0P:(DE-HGF)0$$aCronan, John E.$$b3$$eCorresponding author
000823944 7001_ $$0P:(DE-HGF)0$$aGuo, Zhihong$$b4$$eCorresponding author
000823944 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/acs.biochem.6b00818$$gp. acs.biochem.6b00818$$p6705-6717$$tBiochemistry$$v55$$x1520-4995$$y2016
000823944 8564_ $$uhttps://juser.fz-juelich.de/record/823944/files/Shi%20et%20al_2016.pdf$$yRestricted
000823944 8564_ $$uhttps://juser.fz-juelich.de/record/823944/files/Shi%20et%20al_2016.gif?subformat=icon$$xicon$$yRestricted
000823944 8564_ $$uhttps://juser.fz-juelich.de/record/823944/files/Shi%20et%20al_2016.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823944 8564_ $$uhttps://juser.fz-juelich.de/record/823944/files/Shi%20et%20al_2016.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823944 8564_ $$uhttps://juser.fz-juelich.de/record/823944/files/Shi%20et%20al_2016.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823944 8564_ $$uhttps://juser.fz-juelich.de/record/823944/files/Shi%20et%20al_2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823944 909CO $$ooai:juser.fz-juelich.de:823944$$pVDB
000823944 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000823944 9141_ $$y2016
000823944 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000823944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823944 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823944 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOCHEMISTRY-US : 2015
000823944 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000823944 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000823944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823944 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823944 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823944 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000823944 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000823944 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000823944 920__ $$lyes
000823944 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000823944 980__ $$ajournal
000823944 980__ $$aVDB
000823944 980__ $$aI:(DE-Juel1)ICS-6-20110106
000823944 980__ $$aUNRESTRICTED
000823944 981__ $$aI:(DE-Juel1)IBI-7-20200312