001     823945
005     20210129224910.0
024 7 _ |a 10.1021/acs.biochem.6b00829
|2 doi
024 7 _ |a 0006-2960
|2 ISSN
024 7 _ |a 1520-4995
|2 ISSN
024 7 _ |a WOS:000389557300008
|2 WOS
024 7 _ |a altmetric:14804283
|2 altmetric
024 7 _ |a pmid:27933798
|2 pmid
037 _ _ |a FZJ-2016-06573
082 _ _ |a 570
100 1 _ |a Thomaier, Maren
|0 P:(DE-Juel1)136849
|b 0
|u fzj
245 _ _ |a High-Affinity Binding of Monomeric but Not Oligomeric Amyloid-β to Ganglioside GM1 Containing Nanodiscs
260 _ _ |a Columbus, Ohio
|c 2016
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484405372_17622
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interaction of the amyloid-β protein (Aβ) with neuronal cell membranes plays a crucial role in Alzheimer’s disease. Aβ undergoes structural changes upon binding to ganglioside GM1 containing membranes leading to altered molecular characteristics of the protein. The physiological role of the Aβ interaction with the ganglioside GM1 is still unclear. In order to further elucidate the molecular requirements of Aβ membrane binding, we tested different nanodiscs varying in their lipid composition, regarding the charge of the headgroups as well as ganglioside GM1 concentration. Nanodiscs are excellent model membrane systems for studying protein membrane interactions, and we show here their suitability to investigate the membrane interaction of Aβ. In particular, we set out to investigate whether the binding activity of GM1 to Aβ is specific for the assembly state of Aβ and compared the binding affinities of monomeric with oligomeric Aβ. Using fluorescence titration experiments, we demonstrate high-affinity binding of Aβ(1−40) to GM1 containing nanodiscs, with dissociation constants, KD, in the range from 25 to 41 nM, in a GM1 concentration-dependent manner. Biolayer interferometry experiments confirmed the high-affinity binding of monomeric Aβ(1−40) (KD of 24 nM to 49 nM) as well as of Aβ(1−42) (KD of 30 nM) to GM1 containing nanodiscs, and no binding to phospholipid containing nanodiscs. Interestingly, and in contrast to monomeric Aβ, neither oligomeric Aβ(1−40) nor oligomeric Aβ(1−42) binds to GM1 nanodiscs. To the best of our knowledge, this is the first report of a loss of function for monomeric Aβ upon aggregation.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 1
|u fzj
700 1 _ |a Dammers, Christina
|0 P:(DE-Juel1)145961
|b 2
|u fzj
700 1 _ |a Fabig, Judith
|0 P:(DE-Juel1)138746
|b 3
|u fzj
700 1 _ |a Neudecker, Philipp
|0 P:(DE-Juel1)144510
|b 4
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.biochem.6b00829
|g p. acs.biochem.6b00829
|0 PERI:(DE-600)1472258-6
|n 48
|p 6662-6672
|t Biochemistry
|v 55
|y 2016
|x 1520-4995
856 4 _ |u https://juser.fz-juelich.de/record/823945/files/Thomaier%20et%20al_2016.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823945/files/Thomaier%20et%20al_2016.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823945/files/Thomaier%20et%20al_2016.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823945/files/Thomaier%20et%20al_2016.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823945/files/Thomaier%20et%20al_2016.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/823945/files/Thomaier%20et%20al_2016.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:823945
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136849
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138746
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144510
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEMISTRY-US : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21