000823951 001__ 823951
000823951 005__ 20240712084531.0
000823951 0247_ $$2doi$$a10.1039/C6NR04960E
000823951 0247_ $$2ISSN$$a2040-3364
000823951 0247_ $$2ISSN$$a2040-3372
000823951 0247_ $$2WOS$$aWOS:000387858700019
000823951 037__ $$aFZJ-2016-06579
000823951 082__ $$a600
000823951 1001_ $$0P:(DE-Juel1)157887$$aSmeets, M.$$b0$$eCorresponding author$$ufzj
000823951 245__ $$aPost passivation light trapping back contacts for silicon heterojunction solar cells
000823951 260__ $$aCambridge$$bRSC Publ.$$c2016
000823951 3367_ $$2DRIVER$$aarticle
000823951 3367_ $$2DataCite$$aOutput Types/Journal article
000823951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479882425_25248
000823951 3367_ $$2BibTeX$$aARTICLE
000823951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000823951 3367_ $$00$$2EndNote$$aJournal Article
000823951 520__ $$aLight trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (JSC) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the JSC is enhanced around 1.8 mA cm−2 to 38.5 mA cm−2 due to light trapping in the wavelength range between 1000 nm and 1150 nm.
000823951 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000823951 536__ $$0G:(EU-Grant)609788$$aCHEETAH - Cost-reduction through material optimisation and Higher EnErgy outpuT of solAr pHotovoltaic modules - joining Europe’s Research and Development efforts in support of its PV industry (609788)$$c609788$$fFP7-ENERGY-2013-IRP$$x1
000823951 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000823951 588__ $$aDataset connected to CrossRef
000823951 7001_ $$0P:(DE-Juel1)130219$$aBittkau, K.$$b1$$ufzj
000823951 7001_ $$0P:(DE-Juel1)130795$$aLentz, F.$$b2$$ufzj
000823951 7001_ $$0P:(DE-Juel1)162140$$aRichter, Alexei$$b3$$ufzj
000823951 7001_ $$0P:(DE-Juel1)130233$$aDing, K.$$b4$$ufzj
000823951 7001_ $$0P:(DE-Juel1)130225$$aCarius, R.$$b5$$ufzj
000823951 7001_ $$0P:(DE-Juel1)143905$$aRau, U.$$b6$$ufzj
000823951 7001_ $$0P:(DE-Juel1)130282$$aPaetzold, U. W.$$b7
000823951 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C6NR04960E$$gVol. 8, no. 44, p. 18726 - 18733$$n44$$p18726 - 18733$$tNanoscale$$v8$$x2040-3372$$y2016
000823951 8564_ $$uhttps://juser.fz-juelich.de/record/823951/files/Nanoscale8_18726_Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells.pdf$$yRestricted
000823951 8564_ $$uhttps://juser.fz-juelich.de/record/823951/files/Nanoscale8_18726_Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells.gif?subformat=icon$$xicon$$yRestricted
000823951 8564_ $$uhttps://juser.fz-juelich.de/record/823951/files/Nanoscale8_18726_Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823951 8564_ $$uhttps://juser.fz-juelich.de/record/823951/files/Nanoscale8_18726_Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823951 8564_ $$uhttps://juser.fz-juelich.de/record/823951/files/Nanoscale8_18726_Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823951 8564_ $$uhttps://juser.fz-juelich.de/record/823951/files/Nanoscale8_18726_Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823951 909CO $$ooai:juser.fz-juelich.de:823951$$pec_fundedresources$$pVDB$$popenaire
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157887$$aForschungszentrum Jülich$$b0$$kFZJ
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b1$$kFZJ
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b2$$kFZJ
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162140$$aForschungszentrum Jülich$$b3$$kFZJ
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b4$$kFZJ
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich$$b5$$kFZJ
000823951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b6$$kFZJ
000823951 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000823951 9141_ $$y2016
000823951 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000823951 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000823951 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000823951 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000823951 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000823951 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000823951 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000823951 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000823951 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000823951 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000823951 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000823951 920__ $$lyes
000823951 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000823951 980__ $$ajournal
000823951 980__ $$aVDB
000823951 980__ $$aUNRESTRICTED
000823951 980__ $$aI:(DE-Juel1)IEK-5-20101013
000823951 981__ $$aI:(DE-Juel1)IMD-3-20101013