000823972 001__ 823972
000823972 005__ 20240619083529.0
000823972 037__ $$aFZJ-2016-06598
000823972 041__ $$aEnglish
000823972 1001_ $$0P:(DE-Juel1)161116$$aTang, Hu$$b0$$ufzj
000823972 1112_ $$aThe 30th Conference of European Colloid and Interface Society$$cRome$$d2016-09-04 - 2016-09-09$$gECIS 2016$$wItaly
000823972 245__ $$aSuppressed shear banding in entangled DNA solution by attractive interaction
000823972 260__ $$c2016
000823972 3367_ $$033$$2EndNote$$aConference Paper
000823972 3367_ $$2DataCite$$aOther
000823972 3367_ $$2BibTeX$$aINPROCEEDINGS
000823972 3367_ $$2DRIVER$$aconferenceObject
000823972 3367_ $$2ORCID$$aLECTURE_SPEECH
000823972 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1480423224_20529$$xAfter Call
000823972 520__ $$aShear banding, or strain localization, a narrow zone of intense shearing strain caused by non-homogeneous deformation, is quite ubiquitous in solid and complex fluids. In complex fluids, the existing of shear banding would make conventional rheology difficult to interpret. Especially, in entangled polymer system, the existence of shear banding would overturn the well-known Tube theory. So there is considerable debate over whether shear banding observed in entangled polymers such as Polybutadiene is true or not.We report here just by tuning the attractive interaction between chains, the flow behaviour changes from well-defined banded flow to almost linear flow for the same entangled polymer system. The attractive interaction between polymer chains is gained by grafting short PNIPA (Mw=3k) chains on the DNA main chains with rather low grafting density. The grafting PNIPA doesn’t change the flow behavior of DNA at temperature lower than its LCST while at higher temperature than LCST, the PNIPA undergoes coil-to-globule conformation change and add an attractive interaction on the main DNA chain, which becomes stronger and stronger with temperature. With stronger attractive interaction, the velocity profile becomes almost linear. These observations would help us to understand the mechanism for shear banding in entangle polymer systems on a molecular level and explain why shear banding occurs in some system but not in others.
000823972 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000823972 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000823972 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000823972 7001_ $$0P:(DE-Juel1)130987$$aStiakakis, Emmanuel$$b1$$ufzj
000823972 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b2$$eCorresponding author$$ufzj
000823972 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b3$$ufzj
000823972 8564_ $$uhttps://ecis2016.org/sites/default/files/abstracts/ECIS%20Abstract-Hu-2016.pdf
000823972 8564_ $$uhttps://juser.fz-juelich.de/record/823972/files/ECIS%20Abstract-Hu-2016.pdf$$yRestricted
000823972 8564_ $$uhttps://juser.fz-juelich.de/record/823972/files/ECIS%20Abstract-Hu-2016.gif?subformat=icon$$xicon$$yRestricted
000823972 8564_ $$uhttps://juser.fz-juelich.de/record/823972/files/ECIS%20Abstract-Hu-2016.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000823972 8564_ $$uhttps://juser.fz-juelich.de/record/823972/files/ECIS%20Abstract-Hu-2016.jpg?subformat=icon-180$$xicon-180$$yRestricted
000823972 8564_ $$uhttps://juser.fz-juelich.de/record/823972/files/ECIS%20Abstract-Hu-2016.jpg?subformat=icon-640$$xicon-640$$yRestricted
000823972 8564_ $$uhttps://juser.fz-juelich.de/record/823972/files/ECIS%20Abstract-Hu-2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000823972 909CO $$ooai:juser.fz-juelich.de:823972$$pVDB
000823972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161116$$aForschungszentrum Jülich$$b0$$kFZJ
000823972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130987$$aForschungszentrum Jülich$$b1$$kFZJ
000823972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b2$$kFZJ
000823972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b3$$kFZJ
000823972 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000823972 9141_ $$y2016
000823972 920__ $$lyes
000823972 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000823972 980__ $$aconf
000823972 980__ $$aVDB
000823972 980__ $$aI:(DE-Juel1)ICS-3-20110106
000823972 980__ $$aUNRESTRICTED