000824002 001__ 824002
000824002 005__ 20210129224920.0
000824002 037__ $$aFZJ-2016-06628
000824002 1001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b0$$eCorresponding author$$ufzj
000824002 1112_ $$aUniversität Strasbourg Seminar$$cStrasbourg$$d2016-11-07 - 2016-11-07$$wFrankreich
000824002 245__ $$aThe quautm Hall effect for microwave devices: the gyrator and the circulator
000824002 260__ $$c2016
000824002 3367_ $$033$$2EndNote$$aConference Paper
000824002 3367_ $$2DataCite$$aOther
000824002 3367_ $$2BibTeX$$aINPROCEEDINGS
000824002 3367_ $$2DRIVER$$aconferenceObject
000824002 3367_ $$2ORCID$$aLECTURE_SPEECH
000824002 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1479910973_25254$$xInvited
000824002 520__ $$aThe Faraday-effect circulator was invented in the 1950's, based on some fundamental theoretical insights about the role of nonreciprocity in transmission systems. These Faraday devices are used successfully at both optical and at microwave frequencies; the latter have a unique and essential role in making solid-state quantum computing work. Also in the 1950's, microwave circulators based on the Hall effect,were also considered. It was "proved" then that a Hall bar cannot make a good gyrator (a close cousin to the circulator). This proof is flawed, and we have shown that good gyrators are possible in the quantum Hall regime, if the device is contacted capacitively. We predict that the resulting Hall circulator can be much more miniaturized than the Faraday kind, and I will discuss some recent preliminary experimental efforts in this direction. I will discuss the relation of this device functionality to the physics of chiral edge magnetoplasmons in the Hall conductor.
000824002 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000824002 909CO $$ooai:juser.fz-juelich.de:824002$$pVDB
000824002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b0$$kFZJ
000824002 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000824002 9141_ $$y2016
000824002 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824002 920__ $$lyes
000824002 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000824002 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000824002 980__ $$aconf
000824002 980__ $$aVDB
000824002 980__ $$aUNRESTRICTED
000824002 980__ $$aI:(DE-Juel1)IAS-3-20090406
000824002 980__ $$aI:(DE-Juel1)PGI-2-20110106
000824002 981__ $$aI:(DE-Juel1)PGI-2-20110106