000824031 001__ 824031
000824031 005__ 20210129224925.0
000824031 0247_ $$2doi$$a10.1029/2012JA017747
000824031 0247_ $$2ISSN$$a0022-1406
000824031 0247_ $$2ISSN$$a0096-8013
000824031 0247_ $$2ISSN$$a0148-0227
000824031 0247_ $$2ISSN$$a0272-7528
000824031 0247_ $$2ISSN$$a2156-2202
000824031 0247_ $$2WOS$$aWOS:000306701600005
000824031 0247_ $$2Handle$$a2128/21036
000824031 037__ $$aFZJ-2016-06657
000824031 041__ $$aEnglish
000824031 082__ $$a550
000824031 1001_ $$0P:(DE-HGF)0$$aSimon, Sven$$b0$$eCorresponding author
000824031 245__ $$aAnalysis of Cassini magnetic field observations over the poles of Rhea
000824031 260__ $$aWashington, DC$$bUnion91972$$c2012
000824031 3367_ $$2DRIVER$$aarticle
000824031 3367_ $$2DataCite$$aOutput Types/Journal article
000824031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479968156_20023
000824031 3367_ $$2BibTeX$$aARTICLE
000824031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824031 3367_ $$00$$2EndNote$$aJournal Article
000824031 520__ $$aWe analyze Cassini magnetic field observations from the only two polar flybys of Saturn's largest icy satellite Rhea (R2 on 02 March 2010 and R3 on 11 January 2011) which are scheduled between Saturn Orbit Insertion and the end of the mission in 2017. For the interpretation of these data, we apply estimations from simple analytical models as well as results from numerical hybrid simulations (kinetic ions, fluid electrons) of Rhea's interaction with the incident magnetospheric plasma. In-situ observations of exospheric neutral gas and pick-up ions suggest Rhea to be embedded in a tenuous gas envelope. However, the interaction of this gas with the magnetospheric flow does not make any measurable contributions to the magnetic field perturbations detected above the poles of the moon. Instead, the field perturbations observed in these regions mainly arise from the absorption of magnetospheric particles with large field-aligned velocities, impinging on the north and south polar surface of Rhea. In addition to numerous interaction features known from preceding Cassini flybys of Saturn's plasma-absorbing moons, the magnetic field data acquired above Rhea's poles reveal perturbations of the flow-aligned field component, corresponding to a draping/Alfvén wing pattern. Based on our hybrid simulations, we suggest that these signatures arise from the finite extension of Rhea's wakeside plasma void along the corotational flow direction, yielding a density gradient in corotation direction, and thereby generating a diamagnetic current from the Saturn-facing into the Saturn-averted hemisphere of the moon. This transverse current is responsible for generating a weak Alfvén wing pattern at Rhea which has been detected by the Cassini spacecraft during the R2 and R3 flybys. Due to the large gyroradii of the incident magnetospheric ions, this structure features a pronounced asymmetry with respect to the direction of the convective electric field. Results of our simulation, considering only plasma absorption on the moon, are in good agreement with Cassini magnetometer data from both flybys. At Saturn's icy satellites Tethys and Dione, the low value of the magnetospheric plasma beta most likely prevents the formation of similar currents and measurable flow-aligned magnetic field distortions.
000824031 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000824031 536__ $$0G:(DE-Juel1)hbs06_20111101$$aPlasma and Dust Simulations on the Saturnian Rings (hbs06_20111101)$$chbs06_20111101$$fPlasma and Dust Simulations on the Saturnian Rings$$x1
000824031 588__ $$aDataset connected to CrossRef
000824031 7001_ $$0P:(DE-HGF)0$$aKriegel, Hendrik$$b1
000824031 7001_ $$0P:(DE-HGF)0$$aSaur, Joachim$$b2
000824031 7001_ $$0P:(DE-HGF)0$$aWennmacher, Alexandre$$b3
000824031 7001_ $$0P:(DE-HGF)0$$aNeubauer, Fritz M.$$b4
000824031 7001_ $$0P:(DE-HGF)0$$aRoussos, Elias$$b5
000824031 7001_ $$0P:(DE-HGF)0$$aMotschmann, Uwe$$b6
000824031 7001_ $$0P:(DE-HGF)0$$aDougherty, Michele K.$$b7
000824031 773__ $$0PERI:(DE-600)2403298-0$$a10.1029/2012JA017747$$gVol. 117, no. A7, p. n/a - n/a$$nA7$$pA07211$$tJournal of geophysical research$$v117$$x0148-0227$$y2012
000824031 8564_ $$uhttps://juser.fz-juelich.de/record/824031/files/Simon_et_al-2012-Journal_of_Geophysical_Research__Space_Physics_%281978-2012%29-2.pdf$$yOpenAccess
000824031 8564_ $$uhttps://juser.fz-juelich.de/record/824031/files/Simon_et_al-2012-Journal_of_Geophysical_Research__Space_Physics_%281978-2012%29-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824031 909CO $$ooai:juser.fz-juelich.de:824031$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000824031 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000824031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES : 2015
000824031 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824031 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824031 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000824031 980__ $$ajournal
000824031 980__ $$aVDB
000824031 980__ $$aUNRESTRICTED
000824031 980__ $$aI:(DE-Juel1)NIC-20090406
000824031 9801_ $$aFullTexts