001     824035
005     20210129224926.0
024 7 _ |a 10.1016/j.pss.2014.09.016
|2 doi
024 7 _ |a 0032-0633
|2 ISSN
024 7 _ |a 1873-5088
|2 ISSN
037 _ _ |a FZJ-2016-06661
082 _ _ |a 620
100 1 _ |a Meier, Patrick
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A model of the spatial and size distribution of Enceladus׳ dust plume
260 _ _ |a Kidlington [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480342052_25753
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The structure of Enceladus׳ south polar plume of charged dust is studied by simulations of the dust grain dynamics. The model considers the Lorentz force and charging of the grains by the plasma environment within the plume. Simulated dust plumes are investigated by applying 10 selected sets of dust parameters that include variations of the grain production rate, the slope of the grain size distribution and the start conditions (velocity, direction) of the grains. The modeled dust plume profiles are in good agreement with nanograin data of Cassini Plasma Spectrometer (CAPS). Major results are (1) due to the local plasma environment the nanograins are accelerated by the Lorentz force and form a structured tail; (2) due to the finite charging time the peak dust charge density is located about 0.3–0.6rE0.3–0.6rE below Enceladus׳ south pole; (3) nanograins smaller than 10 nm are more than 99% of the produced dust; (4) CAPS data are best matched if the nanograins are launched with high, collimated start velocities; (5) the grain charging time is crucially affected by inhomogeneities in the local plasma environment.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
536 _ _ |a Plasma and Dust Simulations on the Saturnian Rings (hbs06_20111101)
|0 G:(DE-Juel1)hbs06_20111101
|c hbs06_20111101
|f Plasma and Dust Simulations on the Saturnian Rings
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kriegel, Hendrik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Motschmann, Uwe
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schmidt, Jürgen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Spahn, Frank
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hill, Thomas W.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dong, Yaxue
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jones, Geraint H.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.pss.2014.09.016
|g Vol. 104, p. 216 - 233
|0 PERI:(DE-600)2012795-9
|p 216 - 233
|t Planetary and space science
|v 104
|y 2014
|x 0032-0633
909 C O |o oai:juser.fz-juelich.de:824035
|p extern4vita
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANET SPACE SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)NIC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21