000824043 001__ 824043
000824043 005__ 20240625095033.0
000824043 0247_ $$2doi$$a10.1103/PhysRevB.93.134501
000824043 0247_ $$2ISSN$$a0163-1829
000824043 0247_ $$2ISSN$$a0556-2805
000824043 0247_ $$2ISSN$$a1094-1622
000824043 0247_ $$2ISSN$$a1095-3795
000824043 0247_ $$2ISSN$$a1098-0121
000824043 0247_ $$2ISSN$$a1550-235X
000824043 0247_ $$2ISSN$$a2469-9950
000824043 0247_ $$2ISSN$$a2469-9969
000824043 0247_ $$2Handle$$a2128/12992
000824043 0247_ $$2WOS$$aWOS:000373311300005
000824043 0247_ $$2altmetric$$aaltmetric:4786241
000824043 037__ $$aFZJ-2016-06667
000824043 082__ $$a530
000824043 1001_ $$0P:(DE-HGF)0$$aRicher, Susanne$$b0
000824043 245__ $$aCircuit design implementing longitudinal coupling: A scalable scheme for superconducting qubits
000824043 260__ $$aWoodbury, NY$$bInst.$$c2016
000824043 3367_ $$2DRIVER$$aarticle
000824043 3367_ $$2DataCite$$aOutput Types/Journal article
000824043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1479994089_20027
000824043 3367_ $$2BibTeX$$aARTICLE
000824043 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824043 3367_ $$00$$2EndNote$$aJournal Article
000824043 520__ $$aWe present a circuit construction for a fixed-frequency superconducting qubit and show how it can be scaled up to a grid with strictly local interactions. The circuit QED realization we propose implements σz type coupling between a superconducting qubit and any number of LC resonators. The resulting longitudinal coupling is inherently different from the usual σx type transverse coupling, which is the one that has been most commonly used for superconducting qubits. In a grid of fixed-frequency qubits and resonators with a particular pattern of always-on interactions, coupling is strictly confined to nearest and next-nearest neighbor resonators; there is never any direct qubit-qubit coupling. We note that just a single unique qubit frequency suffices for the scalability of this scheme. The same is true for the resonators, if the resonator-resonator coupling constants are varied instead. A controlled phase gate between two neighboring qubits can be realized with microwave drives on the qubits, without affecting the other qubits. This fact is a significant advantage for the scalability of this scheme
000824043 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000824043 542__ $$2Crossref$$i2016-04-04$$uhttp://link.aps.org/licenses/aps-default-license
000824043 588__ $$aDataset connected to CrossRef
000824043 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b1$$eCorresponding author
000824043 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.93.134501$$bAmerican Physical Society (APS)$$d2016-04-04$$n13$$p134501$$tPhysical Review B$$v93$$x2469-9950$$y2016
000824043 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.93.134501$$gVol. 93, no. 13, p. 134501$$n13$$p134501$$tPhysical review / B$$v93$$x2469-9950$$y2016
000824043 8564_ $$uhttps://juser.fz-juelich.de/record/824043/files/PhysRevB.93.134501.pdf$$yOpenAccess
000824043 8564_ $$uhttps://juser.fz-juelich.de/record/824043/files/PhysRevB.93.134501.gif?subformat=icon$$xicon$$yOpenAccess
000824043 8564_ $$uhttps://juser.fz-juelich.de/record/824043/files/PhysRevB.93.134501.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824043 8564_ $$uhttps://juser.fz-juelich.de/record/824043/files/PhysRevB.93.134501.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824043 8564_ $$uhttps://juser.fz-juelich.de/record/824043/files/PhysRevB.93.134501.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824043 8564_ $$uhttps://juser.fz-juelich.de/record/824043/files/PhysRevB.93.134501.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824043 909CO $$ooai:juser.fz-juelich.de:824043$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000824043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b1$$kFZJ
000824043 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000824043 9141_ $$y2016
000824043 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824043 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824043 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000824043 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000824043 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824043 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824043 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824043 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824043 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824043 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824043 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824043 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824043 920__ $$lyes
000824043 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000824043 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000824043 980__ $$ajournal
000824043 980__ $$aVDB
000824043 980__ $$aUNRESTRICTED
000824043 980__ $$aI:(DE-Juel1)IAS-3-20090406
000824043 980__ $$aI:(DE-Juel1)PGI-2-20110106
000824043 9801_ $$aFullTexts
000824043 981__ $$aI:(DE-Juel1)PGI-2-20110106
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4813269
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13171
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.75.032329
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.094517
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.203601
000824043 999C5 $$1R. Winkler$$2Crossref$$9-- missing cx lookup --$$a10.1007/b13586$$y2003
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.80.033846
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.104516
000824043 999C5 $$1I. G. Lang$$2Crossref$$oI. G. Lang 1963$$y1963
000824043 999C5 $$1I. G. Lang$$2Crossref$$oI. G. Lang 1963$$y1963
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/15/12/123011
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4940230
000824043 999C5 $$1M. H. Devoret$$2Crossref$$oM. H. Devoret Fluctuations Quantiques/Quantum Fluctuations 1997$$tFluctuations Quantiques/Quantum Fluctuations$$y1997
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1175552
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.224511
000824043 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.76.042319