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Circuit design implementing longitudinal coupling: A scalable scheme for superconducting qubits
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We present a circuit construction for a fixed-frequency superconducting qubit and show how it can be scaled

up to a grid with strictly local interactions. The circuit QED realization we propose implements σz type coupling

between a superconducting qubit and any number of LC resonators. The resulting longitudinal coupling is

inherently different from the usual σx type transverse coupling, which is the one that has been most commonly

used for superconducting qubits. In a grid of fixed-frequency qubits and resonators with a particular pattern of

always-on interactions, coupling is strictly confined to nearest and next-nearest neighbor resonators; there is never

any direct qubit-qubit coupling. We note that just a single unique qubit frequency suffices for the scalability of

this scheme. The same is true for the resonators, if the resonator-resonator coupling constants are varied instead.

A controlled phase gate between two neighboring qubits can be realized with microwave drives on the qubits,

without affecting the other qubits. This fact is a significant advantage for the scalability of this scheme.

DOI: 10.1103/PhysRevB.93.134501

I. INTRODUCTION

One of the most promising fields in quantum information

is the implementation of circuit QED-based architectures

using superconducting qubits. While qubit coherence times

and coupling schemes have improved immensely in recent

years [1–3], the scalability of these systems is still a huge

problem. We would like to implement a two-dimensional

(2D) grid of qubits, where single-qubit gates and two-qubit

gates between nearest-neighbor qubits can be done locally,

that is, without affecting the other qubits in the grid. Most

architectures either depend on tuning the qubits in and out

of resonance to make gates [2] or on fixed-frequency qubits,

where gates are made via microwave radiation [4]. While

fixed-frequency qubits usually have larger coherence times

than tunable qubits, scalability is constrained by the always-on

interaction.

However, Billangeon et al. present a scheme in [5] using a

grid of fixed-frequency qubits and resonators with a particular

pattern of always-on interactions that have strictly bounded

range in the grid. When viewed in an appropriate frame, there

is no coupling between any of the elements, unless we drive a

certain two-qubit gate between nearest-neighbor qubits. As we

will see, this architecture, which is based on what they refer to

as longitudinal coupling, has a high potential for scalability.

Another useful application of longitudinal coupling is fast

quantum nondemolition readout of a qubit via a resonator,

as shown in [6].

In this paper, we will start by giving a short summary

of Billangeon’s scheme in Sec. II. We will then proceed by

explaining what kind of Lagrangian we need for longitudinal

coupling (Sec. III) and present a proposal for a circuit QED

realization of a qubit-resonator unit with longitudinal coupling

(Sec. IV). Finally, in Secs. V–VII, we will explain how this

idea can be scaled up to a grid with strictly local interactions.

In the Appendices, we will analyze the effect of unsymmetrical

parameters due to imprecise fabrication, show how to do the

transition from the Lagrangian to the Hamiltonian, and explain

how the Cholesky transformation can be used for variable

elimination.

II. TRANSVERSE AND LONGITUDINAL COUPLING

Let us first consider a system where a qubit is coupled

to a resonator via its σx degree of freedom. Most circuit

QED structures result in this kind of coupling, which we will

denominate transverse coupling, in contrast to the σz type

longitudinal coupling we will study below. The corresponding

Hamiltonian is the Rabi Hamiltonian

H = ωra
†a +

�

2
σz + g σx(a† + a), (1)

where ωr is the frequency of the resonator and � is the gap of

the qubit, which is taken to be a two-level system.

If the coupling g between the qubit and the resonator is

small compared to their detuning � − ωr (dispersive regime),

we can approximately diagonalize the Hamiltonian using the

Schrieffer-Wolff unitary transformation

U = exp (γ (a†σ− − aσ+) − γ̄ (a†σ+ − aσ−)) (2)

with γ = g/(� − ωr ) and γ̄ = g/(� + ωr ) (see [7–9]). Note

that this is a perturbative treatment, where to second order in

g we find

H′ = ωra
†a +

�

2
σz + χ σz(a

† + a)2 (3)

with χ = g (γ + γ̄ )/2. The last term in Eq. (3) is the so-

called dispersive shift that makes the transition frequency of

the resonator dependent on the qubit’s state and vice versa.

While this shift is useful for read-out, it also means that the

always-on interaction between the resonator and the qubit will

inevitably entangle them. Unlike for the longitudinal coupling

(see below), there is no local frame in which the coupling is

turned off. Another undesirable effect of the dispersive shift is

that it makes the qubit relaxation rate dependent on the photon

lifetime (the so-called Purcell effect [10]).

If we couple two qubits to the same resonator and use it as

a quantum bus, a perturbative transformation similar to Eq. (2)

will indicate direct always-on coupling between the qubits.

This always-on coupling can be problematic when we want to

address qubits separately in a larger grid.

Mindful of these problems, Billangeon et al. proposed a

scheme in [5] using longitudinal coupling, that is, a system
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with the Hamiltonian

H = ωr a†a +
�

2
σz + g σz(a

† + a), (4)

where the qubit couples to the resonator via a σz operator,

instead of the usual (transverse) σx type coupling of the Rabi

Hamiltonian [Eq. (1)]. Using the unitary transformation (Lang-

Firsov transformation [11])

U = e−θσz(a†−a) (5)

with θ = g/ωr , the Hamiltonian can be exactly diagonalized,

showing that there is no dispersive shift:

H′ = ωr a†a +
�

2
σz −

g2

ωr

1. (6)

Remarkably, the energies associated with the qubit and the

resonator are unaffected by the longitudinal coupling. Note

that while the treatment in the transverse case [Eq. (2)] is only

perturbative, the Lang-Firsov transformation is exact, with no

restrictions on the coupling strength or detuning of the system.

This has the advantage that even for large coupling strengths,

the qubit relaxation rate is not degraded by a dependence on

the finite photon lifetime. We have thus gone to a frame where

the Hamiltonian is diagonal without any residual coupling.

A transverse drive on the qubit

Hd (t) = � cos(ωt + φ)σx (7)

has to be transformed to the same frame, again using Eq. (5).

The interaction induced by this drive will be rigorously

confined to a small neighborhood of the qubit being driven,

without generating any direct qubit-qubit coupling (see below).

As shown explicitly in [5], a drive at the qubit’s frequency ω =
� enables us to do single-qubit operations [within the rotating

wave approximation (RWA)], while a drive at ω = |� ± k ωr |
leads to sideband transitions of order k between the qubit and

the resonator that will later be used to implement a C-phase

gate between neighboring qubits.

These sideband transitions are possible due to the absence

of the dispersive shift in Eq. (6), since a certain transition

will stay resonant irrespective of the number of photons in the

resonators.

This idea can be extended to a grid (see Fig. 1), where

a unit cell consists of a qubit coupled longitudinally to four

resonators and every resonator is coupled to a resonator of

the neighboring unit cell. As shown in [5], the associated

Hamiltonian can be exactly diagonalized if the two resonators

are coupled through an orthogonal degree of freedom [that is,

i(a† − a) instead of (a† + a)].

The desired Hamiltonian for two qubits coupled via two

resonators is

H =
2

∑

i=1

ωi a
†
i ai +

�i

2
σ z

i + gi σ
z
i (a

†
i + ai)

− gc (a
†
1 − a1)(a

†
2 − a2). (8)

Given that this system is exactly diagonalizable, and there

exists a frame without dispersive shifts or residual couplings,

driving one qubit has no effect on the neighboring qubits,

as the interaction is strictly confined to the nearest and next-

nearest neighbor resonators. There is rigorously no qubit-qubit

FIG. 1. In [5], a 2D lattice of qubits is proposed in which each

qubit couples to four resonators via its longitudinal degree of freedom

and every resonator couples to a resonator of the next unit cell via

an orthogonal degree of freedom. Coupling is strictly restricted to

the nearest and next-nearest neighbor resonators of each qubit. In

particular, there is never any direct qubit-qubit coupling. Therefore,

all qubits could, in principle, have the same frequency. The same is

true for the resonators, as shown in Appendix A.

interaction. By choosing the frequency of the transverse drive

on the qubit [Eq. (7)], sideband transitions can be driven

either between the qubit and a nearest neighbor resonator

or between the qubit and both the nearest and next-nearest

neighbor resonators (within the RWA). As coupling will be

strictly restricted to the nearest and next-nearest neighbor

resonators of each qubit, all qubits could, in principle, have the

same frequency. As shown in Appendix A, the same is true for

the resonators. While the qubit frequencies are unaffected by

the diagonalization of H, the resonator frequencies are shifted

[see Eq. (B9) in [5] and Appendix A). By varying the coupling

between the resonators, we can ensure that all eight resonators

that surround a qubit have a different bare frequency, even if

all eight original frequencies were equal. This allows us to

choose unambiguously which sideband transition we want to

drive (see Fig. 1).

Read-out and a controlled-phase gate between two neigh-

boring qubits are possible via a series of sideband transitions

between either qubit and one or both resonators. There is never

any direct qubit-qubit coupling needed. The fact that all other

qubits are unaffected by these actions is a significant advantage

concerning the scalability of this scheme.

We want to realize the idea presented in [5] using supercon-

ducting qubits. While there are two proposals for such a qubit-

resonator system in [5], numerical calculations are needed to

determine the type of coupling. Our approach, in contrast,

uses a very simple one-junction qubit, where the coupling can

be characterized with purely analytic considerations. Whereas

other implementations of longitudinal coupling in circuit QED

([12,13]) rely on changing the qubit’s resonance frequency, our

approach is inherently different, as it exploits the parity of the

interaction term while keeping the resonance frequency fixed.

In the circuit we propose each qubit couples longitudinally

to four resonators via the phase degree of freedom and each

resonator couples to the next one via the charge degree of

freedom. This proposal is easily scalable to any number of

134501-2



CIRCUIT DESIGN IMPLEMENTING LONGITUDINAL . . . PHYSICAL REVIEW B 93, 134501 (2016)

FIG. 2. While the product of the wave functions ψ+ and ψ−
(orange curve) is an even function in ϕq , ψ0ψ1 (green curve) is an

odd function.

resonators per qubit and any number of 1-qubit–n-resonator

unit cells, as we will show in Secs. V–VII.

III. WHAT IS LONGITUDINAL COUPLING?

How do we determine whether a coupling term in an electric

circuit is longitudinal or transverse? While the σx operator

of a qubit couples the qubit basis states 〈0|σx |1〉 �= 0, the

σz operator couples the states |±〉 = (|0〉 ± |1〉)/
√

2, that is

〈+|σz|−〉 �= 0.

Consider a system of a qubit coupled to a resonator via a

phase degree of freedom (see Sec. IV). Suppose we can write

a coupling term between qubit and resonator as a product

function f (ϕq,ϕr ) = fq(ϕq)fr (ϕr ) of the phase variables ϕq

for the qubit and ϕr for the resonator. In this picture, the qubit

states correspond to wave functions and σz type coupling is

given by the matrix element

〈+|g σz|−〉 =
∫ ∞

−∞
ψ+(ϕq)fq(ϕq)ψ−(ϕq) dϕq . (9)

For this to be nonzero, we need fq ψ+ψ− to be an even function

of ϕq (as the integral of an odd function over a symmetric

interval is always zero).

The appropriate wave functions for approximately har-

monic potentials are superpositions of harmonic oscillator

wave functions, where ψ0 is an even function in ϕq and ψ1 is

odd. Knowing that ψ+ψ− = (ψ2
0 − ψ2

1 )/2 is an even function

(see Fig. 2), fq must be also for nonzero longitudinal coupling.

On the other hand, a coupling term that is an odd function in

ϕq will give transverse coupling, as ψ0ψ1 is odd.

Similar reasoning for the resonator variable leads to the

conclusion that the coupling term g σz(a
† + a) corresponds to

a function that is even in ϕq and odd in ϕr . Our objective is to

create electric circuits with this form of coupling.

IV. QUBIT COUPLED TO RESONATOR

Throughout this paper, we will describe superconducting

circuits in terms of nodes and branches, where every circuit

element is a branch that connects two nodes. We will take

the superconducting phases at the nodes as the variables

(following [14]), where the phase at a node is the rescaled

FIG. 3. Qubit (blue junction) coupled to a resonator via its

longitudinal degree of freedom.

flux or, equivalently, the time integral over the node voltage:

ϕi =
(

2π


0

)


i =
(

2π


0

) ∫ t

−∞
Vi(t

′) dt ′. (10)

Note that, as the overall phase is undefined, the real

variables will be the phase differences between the nodes,

which reduces the number of independent variables by 1.

Figure 3 depicts our central concept for a lumped element

system of a qubit coupled to a resonator via its longitudinal

degree of freedom. The qubit is the simplest possible design:

a single junction with a bare capacitance (depicted in blue).

We assume that the upper and lower branches in Fig. 3 are

identical (for the unsymmetrical case see Appendix B) and

that the loops created by the inductances and the Josephson

junctions are each threaded by a flux 
x = 
0/4. Writing the

Lagrangian in terms of the node phases yields

L =
(


0

2π

)2(
C

2
(ϕ̇a − ϕ̇c)2 +

C

2
(ϕ̇b − ϕ̇c)2

+
Cq

2
(ϕ̇a − ϕ̇b)2 −

1

2L
(ϕa − ϕc)2 −

1

2L
(ϕb − ϕc)2

)

+ EJq cos(ϕa − ϕb) + EJ sin(ϕa − ϕc)

+ EJ sin(ϕb − ϕc), (11)

where the threading fluxes turn the last two terms from cosine

to sine. We introduce

ϕq = ϕa − ϕb, ϕp = ϕa + ϕb (12)

and rewrite the Lagrangian in these new variables

L =
(


0

2π

)2(
2 Cq + C

4
ϕ̇2

q +
C

4
(ϕ̇p − 2 ϕ̇c)2

−
1

4L

[

ϕ2
q + (ϕp − 2 ϕc)2

]

)

+ EJq cos(ϕq)

+ 2EJ cos
(ϕq

2

)

sin

(

ϕp − 2 ϕc

2

)

. (13)

Obviously, there are only two independent variables in

Eq. (13), namely ϕq and

ϕr = ϕp − 2 ϕc. (14)
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FIG. 4. Multiple coupling junctions. The flux has to be adjusted

to 
x = k 
0/4.

We call ϕq the qubit variable as its potential consists of

an anharmonic Josephson term and an additional harmonic

term. The second variable ϕr = ϕa + ϕb − 2 ϕc has a purely

harmonic potential (apart from the coupling term) and will

therefore serve as the resonator.

With this choice of variables, all coupling terms between the

qubit and the resonator via the capacitances and inductances

cancel out completely and the only coupling term that is left

is the desired longitudinal one

L =
(


0

2π

)2(
2 Cq + C

4
ϕ̇2

q +
C

4
ϕ̇2

r −
1

4L

(

ϕ2
q + ϕ2

r

)

)

+ EJq cos(ϕq) + 2EJ cos
(ϕq

2

)

sin
(ϕr

2

)

. (15)

The final term of L is a coupling term that is even in the qubit

variable and odd in the resonator variable; as discussed in

Sec. III, this gives the coupling the longitudinal form. Observe

that the qubit-resonator system is completely uncoupled for

EJ = 0.

Now assuming the qubit’s potential is anharmonic enough

to justify a two-level approximation, we find the coupling term

to be

2EJ cos
(ϕq

2

)

sin
(ϕr

2

)

→ g σz((a
† + a) + O((a† + a)3)) (16)

(compare Sec. III). If we want to get rid of the higher order

resonator terms, we could substitute the coupling junctions by

a row of k equal junctions and adjust the flux to 
x = k 
0/4 as

depicted in Fig. 4. Such Josephson arrays are oftentimes used

in fluxonium qubits (see [15]). As described in detail in [16],

the collective modes generated by the geometric capacitances

of these junctions can be ignored as they are of much higher

energy. Therefore, the use of a Josephson array leads in a

simple way to a linearized coupling term

2EJ cos[ϕq/(2k)] sin[ϕr/(2k)] ≈ EJ ϕ2
q ϕr

→ g σz(a
† + a), (17)

which corresponds exactly to the longitudinal coupling term in

Eq. (4). This series expansion is the only approximation ever

made in the derivation of this Lagrangian.

Note that we do not need to consider charge offsets here,

as all charge islands are short-circuited by the inductors (see

Fig. 3 and [15]). Charge fluctuations are a big problem for

superconducting qubits, such as the Cooper pair box, which

FIG. 5. Qubit coupled independently to n resonators via its

longitudinal degree of freedom. We do not show compensating fluxes

here; note that in the larger grid implementation (Fig. 8) all larger

loops in the circuit will always contain whole numbers of flux quanta,

so no compensating fluxes are needed there.

can be reduced by choosing certain parameter ranges (see [17]

on transmon qubits). A circuit such as ours that is inherently

free of charge offsets circumvents any such restrictions on the

parameter ranges.

V. EXTENSION TO N RESONATORS

The idea presented in Sec. IV is easily extendable to a block

of one qubit coupled separately to any number of resonators as

depicted in Fig. 5. Fortunately, adding another resonator arm

to the system does not have any effect on the first resonator

and the only coupling terms are the ones between the qubit

and each resonator

L =
∑

j

(


0

2π

)2(
2 Cq + Cj

4
ϕ̇2

q +
Cj

4
ϕ̇2

r,j

−
1

4Lj

(

ϕ2
q + ϕ2

r,j

)

)

+ EJq cos(ϕq)

+ 2EJ,j cos
(ϕq

2

)

sin
(ϕr,j

2

)

, (18)

where again

ϕq = ϕa − ϕb and ϕr,j = ϕa + ϕb − 2 ϕc,j . (19)

While we need the upper and lower branch of each resonator

to be equal (see Sec. IV and Appendix B), the individual

resonator arms are completely independent of each other and

can have different capacitances, inductances, and Josephson

junctions (that is, different resonator frequencies and coupling

constants).

134501-4
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FIG. 6. This circuit realizes two qubits and two resonators

coupled according to the scheme of [5].

As each resonator arm adds another harmonic term to

the qubit’s potential, it will be important to set EJq to be

sufficiently large compared with [
0/(2π )]2
∑

j 1/(4Lj ) to

maintain the qubit’s anharmonicity (see Appendix C).

VI. TWO COUPLED BLOCKS

Now we want to couple one of these blocks to the next one

via the charge degree of freedom of the resonator in order to

implement Eq. (8). Figure 6 shows the simplest way we have

found to obtain the desired coupling between two blocks.

We connect two neighboring resonator branches by tying

their ϕc nodes together and connect all qubit nodes to a

common ground node ϕg via capacitances Cg . Note that the

two blocks are uncoupled for Cg = 0. As the node phases

are only defined up to an overall phase, we have the freedom

to set ϕg = 0 (ground node [14]) without loss of generality.

However, we will keep ϕg here in order to show that possible

charge offsets between ground and the rest of the circuit cannot

influence our system. The kinetic energy of this coupled system

is

T =
2

∑

i=1

(


0

2π

)2(
Cq,i

2
(ϕ̇a,i − ϕ̇b,i)

2 +
Ci

2
(ϕ̇a,i − ϕ̇c)2

+
Ci

2
(ϕ̇b,i − ϕ̇c)2 +

Cg

2
((ϕ̇a,i − ϕ̇g)2 + (ϕ̇b,i − ϕ̇g)2)

)

=
2

∑

i=1

(


0

2π

)2(
Cq,i

2
ϕ̇2

q,i +
Ci + Cg

4

(

ϕ̇2
q,i + ϕ̇2

r,i

)

+ 2 Cg (ϕ̇c − ϕ̇g)2 + Cg (ϕ̇c − ϕ̇g) (ϕ̇r,1 + ϕ̇r,2)

)

, (20)

again with

ϕq,i = ϕa,i − ϕb,i, ϕr,i = ϕa,i + ϕb,i − 2 ϕc. (21)

We can see that, apart from the two qubit and resonator

variables, a fifth variable ϕc − ϕg appears that mediates

the coupling between the resonator variables ϕr,1 and ϕr,2.

Introducing

ϕ∗ = ϕc − ϕg +
ϕr,1 + ϕr,2

4
(22)

leads to

T =
2

∑

i=1

(


0

2π

)2(
2 Cq,i + Ci + Cg

4
ϕ̇2

q,i +
Ci

4
ϕ̇2

r,i

+ 2 Cg ϕ̇2
∗ +

Cg

8
(ϕ̇r,1 − ϕ̇r,2)2

)

. (23)

This makes clear that there is a direct capacitive coupling

between the two resonator variables as desired, while the

unwanted variable ϕ∗ decouples. Note that the transformation

given in Eq. (22) is nonsingular and that the system variables as

defined in Eq. (21) remain unchanged. As ϕ∗ does not appear

at all in the potential energy of the coupled system

U =
2

∑

i=1

(


0

2π

)2
1

4Li

(

ϕ2
q,i + ϕ2

r,i

)

− EJq,i cos(ϕq,i)

− 2EJ,i cos
(ϕq,i

2

)

sin
(ϕr,i

2

)

(24)

it can be safely discarded (compare also Appendix D).

Without making any approximations apart from the series

expansion in Eq. (17), we have thus found a system that

implements the Hamiltonian proposed by Billangeon [Eq. (8)].

Note that as ϕg appears only in the discarded variable ϕ∗,

a charge offset between ground and the rest of the circuit can

never influence our system variables [Eq. (21)]. This means

that even in the whole grid we never need to take charge

fluctuations into account, which gives us a lot of freedom in

choosing the parameters.

A. Stray capacitances

Stray capacitances might appear between a resonator node

ϕc and ground as shown in Fig. 7. As we will see, this only

leads to a rescaling of the coupling but does not affect its form

or its strict locality.

Such a stray capacitance will add a term ∼Cs(ϕ̇c − ϕ̇g)2 to

the kinetic energy given in Eq. (20). In order to compensate

for this extra term, we have to adapt the transformation given

in Eq. (22) to

ϕ∗ = ϕc − ϕg +
Cg

4Cg + Cs

(ϕr,1 + ϕr,2) (25)

FIG. 7. A stray capacitance between ϕc and ground leads to a

rescaling of the coupling.
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FIG. 8. This circuits realizes a plaquette of four qubits coupled

according to the scheme of [5].

(this is an application of a Cholesky-decomposition technique;

see Appendix D for the derivation), which finally leads to

T =
2

∑

i=1

(


0

2π

)2(
2 Cq,i + Ci + Cg

4
ϕ̇2

q,i +
Ci

4
ϕ̇2

r,i

+
4Cg + Cs

2
ϕ̇2

∗ +
C2

g

2(4Cg + Cs)
(ϕ̇r,1 − ϕ̇r,2)2

)

. (26)

Note again that Eq. (25) leaves the system variables un-

changed. Thus, the only effect of the stray capacitance Cs

is the rescaling of the coupling term in Eq. (26).

VII. EXTENSION TO GRID

It is straightforward to extend this idea to the grid proposed

by Billangeon [5] (see Fig. 1), where every qubit couples

longitudinally to its resonators and every resonator couples

capacitively to a resonator of the next block.

In analogy to the two coupled blocks described in Sec. VI,

Fig. 8 shows a plaquette of four coupled blocks. All qubit

nodes (blue colored nodes) are connected to the same ground

node ϕg = 0 (compare Sec. VI) via capacitances Cg . Note that

we need one such capacitance for every connection; that is, a

qubit block needs a capacitance to ground for every block it

couples to (see Fig. 9).

For every unit of two qubits coupled via two resonators, we

will find the kinetic energy to be equal to Eq. (20). In order to

emphasize that this coupling is entirely local, we can write the

kinetic energy for the ring of four coupled qubits depicted in

Fig. 8. It is

T =
∑

i,j

(


0

2π

)2(
2Cq,i + Ci,j + Cg,j

2
ϕ̇2

q,i +
1

2
ϕ̇

T
j Cj ϕ̇j

)

,

(27)

with ϕ
T
j = (ϕc,j ,ϕr,1,j ,ϕr,2,j ) as defined in Eq. (21), where

ϕr,1,j and ϕr,2,j are the two resonators connected at node ϕc,j ,

and

Cj =







4 Cg,j Cg,j Cg,j

Cg,j
C1,j +Cg,j

2
0

Cg,j 0
C2,j +Cg,j

2






, (28)

where i = 1,2, . . . numbers the qubits and j = α,β, . . .

numbers the connections between two coupled blocks as

depicted in Fig. 8. It becomes clear that this is a completely

local problem, as there is no coupling at all between Cα and

Cβ . Introducing

ϕ∗,j = ϕc,j +
ϕr,1,j + ϕr,2,j

4
(29)

[compare Eq. (22)] for each of these connections, we can

independently decouple the superfluous variables ϕ∗,j and

discard them (see also Appendix D). We find that, for every

connection j between two coupled blocks, we can always write

the kinetic energy as

Tj =
2

∑

i=1

(


0

2π

)2(
2 Cq,i + Ci,j + Cg,j

4
ϕ̇2

q,i

+
Ci,j

4
ϕ̇2

r,i,j + 2 Cg,j ϕ̇2
∗,j +

Cg,j

8
(ϕ̇r,1,j − ϕ̇r,2,j )2

)

(30)

[which is equal to Eq. (23)].

FIG. 9. At grid edges, it becomes important that one capacitance to ground is needed for every block a qubit couples to.
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FIG. 10. The qubit can be driven by either connecting a voltage

source to the qubit nodes ϕa and ϕb or by applying a flux through the

main loop.

In total, we can say that while the potential energy

contains the longitudinal coupling between a qubit and its

resonators with no connection between two blocks 1 and 2,

the kinetic energy contains the transverse coupling between

two resonators, with no connection between two such units α

and β.

VIII. DRIVING THE QUBIT FOR SINGLE

AND TWO-QUBIT GATES

Read-out and gates can be performed by applying a

transverse microwave drive on the qubit. Connecting an AC

voltage source to the qubit nodes ϕa and ϕb as shown in Fig. 10

yields, with ϕ̇d = 2π

0

Vd (t),

Ld =
(


0

2π

)2
Cd

2
[ϕ̇d − (ϕ̇a − ϕ̇b)]2

=
Cd

2
Vd (t)2 −


0

2π
CdVd (t)ϕ̇q +

(


0

2π

)2
Cd

2
ϕ̇2

q . (31)

While the first term is a scalar offset that will be ignored,

the second term corresponds to a transverse driving term

∼A cos(ωt) σx as it is an odd function in ϕq (compare Sec. III).

The third term adds to the kinetic energy of the qubit.

Alternatively, a small flux 
d (t) = 
0/(2π ) A cos(ωt)

through the main loop would lead to the same driving term, as

cos[ϕq − A cos(ωt)] ≈ cos(ϕq) + A cos(ωt) sin(ϕq) (32)

for A ≪ ϕq , which corresponds again to a σx type transverse

drive, as sin(ϕq) is an odd function in ϕq (compare Sec. III).

The first term adds to the potential energy of the qubit.

Transforming this drive to the frame where H is diagonal

[compare Eq. (5)], it can be used to drive both single-qubit and

qubit-resonator sideband transitions. As shown explicitly in

[5], single-qubit rotations can be done by driving the qubit at

its transition frequency ω = �. Similarly, sideband transitions

between the qubit and both the nearest and next-nearest

resonator can be driven by choosing the drive frequency to

be ω = |� ± �r,1 ± �r,2| (compare Appendix A). As shown

in [5], a series of three of these sideband transitions leads to a

two-qubit phase gate.

IX. SUMMARY

We presented a proposal for a circuit QED system where

a qubit couples to resonators via its longitudinal degree of

freedom and every resonator is capacitively coupled to a

resonator from the next unit cell. This proposal is easily

scalable to any number of resonators per qubit and any number

of unit cells as shown in Secs. V–VII.

This constitutes an implementation of an idea presented

by Billangeon et al. in [5]. As they show explicitly, such

a system is exactly diagonalizable using a series of unitary

transformations. In this diagonal frame, there are no dispersive

shifts or residual couplings between any qubits or resonators.

Single-qubit operations and sideband transitions between a

qubit and any of its resonators can be done by driving the

qubit at a certain frequency. The coupling is strictly confined

to nearest and next-nearest neighbor resonators of each qubit;

there is never any direct qubit-qubit coupling.

Our proposal for the qubit-resonator system should be

inherently unaffected by charge fluctuations, which leaves us a

lot of freedom to choose our system parameters. In particular,

the longitudinal coupling between the qubit and a resonator

can be tuned independently of the other parameters (see

Appendix C).
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APPENDIX A: DIAGONALIZATION

As shown explicitly in [5], the Hamiltonian

H =
2

∑

i=1

ωi a
†
i ai +

�i

2
σ z

i + gi σ
z
i (a

†
i + ai)

− gc (a
†
1 − a1)(a

†
2 − a2), (A1)

can be exactly diagonalized by a series of unitary transforma-

tions leading to

H′ = �+a
†
1a1 + �−a

†
2a2 +

2
∑

i=1

�i

2
σ z

i −
(

g2
1

ω1

+
g2

2

ω2

)

1.

(A2)

We can see that while the qubit frequencies are unaffected by

the transformations, the resonator frequencies get shifted to

�± =
ω1 + ω2

2
±

1

2

√

(ω1 − ω2) + 16 gcω1 ω2. (A3)

A transverse drive on one of the qubits

Hd (t) = � cos(ωt + φ)σ x
1 (A4)

has to be transformed to the same frame. In a rotating frame,

where the qubits and the resonators stand still, we can then

apply the rotating wave approximation and frequency-select

the gate we want to drive. While single-qubit operations

are implemented at ω = �1, sideband transitions between

the qubit and either one or both neighboring resonators can
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be driven using ω = |�1 ± �±| or ω = |�1 ± �+ ± �−|,
respectively. On a grid, where every qubit has four nearest

neighbor resonators and four next-nearest neighbor resonators

(see Fig. 1), we need eight different frequencies �i
±, i =

1, . . . ,4, for unequivocal frequency selection. Remarkably, as

�+ �= �− for gc �= 0, this can be realized even if all eight

original frequencies were equal, just by having four different

values of gc.

APPENDIX B: UNEQUAL JUNCTIONS

The characteristics of the qubit proposed in Sec. IV highly

depend on the fact that the upper and lower resonator branch

(see Fig. 3) are exactly identical. While it is relatively easy

to build two equal capacitances or inductances, this is quite

difficult for Josephson junctions. Suppose the two junctions

have slightly different Josephson energies EJ1
and EJ2

, then

the coupling term is

EJ,1 sin

(

ϕr + ϕq

2

)

+ EJ,2 sin

(

ϕr − ϕq

2

)

= EJ�

(

sin
(ϕr

2

)

cos
(ϕq

2

)

+ d cos
(ϕr

2

)

sin
(ϕq

2

)

)

,

(B1)

where d = (EJ,2 − EJ,1)/EJ� is the junction asymmetry

and EJ� = EJ,1 + EJ,2 (compare [6]). The second term in

Eq. (B1) is an unwanted transverse coupling term ∼σx a†a,

that cancels out if EJ1
= EJ2

. As a remedy to this problem,

one could consider making one or both of the junctions tunable

by using a superconducting quantum interference device

(SQUID). Note that the qubit and the resonator are completely

uncoupled for EJ,1 = EJ,2 = 0. Two SQUIDs instead of the

two junctions would therefore lead to tunable coupling.

Equivalently, transverse coupling terms arise if the in-

ductances or capacitances in the upper and lower resonator

branch are not identical. However, they will always have the

form σx(a† ± a) and can therefore not compensate the term

mentioned in Eq. (B1).

APPENDIX C: HAMILTONIAN FORMULATION

We can rewrite the qubit Lagrangian [Eq. (15)] in the

Hamiltonian formulation. For EJ = 0, the coupling to the

resonator is zero and the Lagrangian for the qubit only is

Lq =
(


0

2π

)2(
Ctot

4
ϕ̇2

q −
1

4Ltot

ϕ2
q

)

+ EJq cos(ϕq) (C1)

with Ctot = 2 Cq +
∑

j (Cj + Cg,j ) and 1/Ltot =
∑

j 1/Lj ,

where Cj and Lj are the capacitances and inductances of

the resonator arms connected to the qubit and Cg,j are the

capacitances to ground (compare Sec. VII).

The conjugate variable to the phase ϕq is the rescaled charge

n = Q/(2e) (number of Cooper pairs) with

n =
1

�

∂L

∂ϕ̇q

. (C2)

We thus find ϕ̇q = 2 n �/Ctot(2π/
0)2, and with EC =
e2/(2Ctot) and 
0 = π�/e the Hamiltonian yields

Hq = 8EC n2 +
1

4Ltot

(


0

2π

)2

ϕ2
q − EJq cos(ϕq). (C3)

Using the rescaled Josephson energy

E∗
Jq = EJq +

1

2Ltot

(


0

2π

)2

, (C4)

the Hamiltonian can be written as

Hq = 8EC n2 − EJq +
1

2
E∗

Jqϕ
2
q −

1

24
EJqϕ

4
q (C5)

up to fourth order in ϕq . Now we quantize, treat-

ing n̂ ∼ i(c† − c) and ϕ̂q ∼ c† + c as operators with c =
∑

m

√
m + 1|m〉〈m + 1| and [ϕq,n] = i and write

Hq = �c†c +
δ

12
(c† + c)4, (C6)

where

� = 4
√

E∗
JqEC (C7)

is the gap of the qubit and

δ = −
2ECEJq

E∗
Jq

(C8)

is its anharmonicity (compare [17]). If the anharmonicity is

large enough, we can treat the qubit as a two-level system and

write

Hq =
�

2
σz (C9)

instead of Eq. (C6). As charge fluctuations do not matter

here, we have a lot of freedom in choosing these parameters.

Notably, there is no reason for the anharmonicity to be small.

In the same way, we can find expressions for the resonator

frequencies and couplings in a coupled system of two qubits

and two resonators (as described in Sec. VI). Using � = 1, the

frequency of the first resonator yields

ωr,1 =

√

2C2 + Cg

[2C1C2 + Cg(C1 + C2)]L1

(C10)

and similarly for ωr,2, while we find

g1 = −
EJ,1

2

√

π3

e 
3
0

(

(2C2 + Cg)L1

2C1C2 + Cg(C1 + C2)

)
1
4

√

EC,1

E∗
Jq,1

(C11)

for the longitudinal coupling between qubit 1 and its resonator

and

gc =
� Cg

2
√

2C1C2+Cg(C1+C2)[(2C1+Cg)(2C2 + Cg)L1L2]
1
4

(C12)

for the capacitive coupling between the two resonators. Note

that EJ,i only appears in the term for the longitudinal coupling.

We are thus able to tune this coupling independently of the

other variables. Likewise, the Josephson energy of the qubit

junction EJq appears only in the expression for the qubit gap
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� and its anharmonicity δ. If we choose Cg to be large to

achieve strong coupling between the resonators, we can still

have a high anharmonicity as long as EJq is large enough.

APPENDIX D: VARIABLE ELIMINATION USING

THE CHOLESKY TRANSFORMATION

The so-called Cholesky decomposition of a Hermitian

positive-definite matrix A consists of an upper triangular

matrix B with real and positive diagonal entries and its

conjugate transpose B†, that is,

A = B†B. (D1)

This decomposition has oftentimes a much simpler form than

a square root decomposition, making analytic calculations a

lot easier. As we will see, the Cholesky transformation can be

used for the elimination of unwanted variables (see Secs. VI

and VI A).

Let us consider the kinetic energy for two coupled blocks

given in Sec. VI [Eq. (20)] including the stray capacitance

term introduced in Sec. VI A, that is,

T =
∑

i

(


0

2π

)2(
2 Cq,i + Ci + Cg

2
ϕ̇2

q,i +
1

2
ϕ̇

T C ϕ̇

)

,

(D2)

with ϕ
T = (ϕ̄ = ϕc − ϕg,ϕr,1,ϕr,2) as defined in Eq. (21), and

C =







4Cg + Cs Cg Cg

Cg
C1+Cg

2
0

Cg 0
C2+Cg

2






. (D3)

While it is not trivial to find the eigenvalues and eigenvectors

of C, its Cholesky decomposition (the first row in particular)

has a quite simple form:

B =









√

4Cg + Cs
Cg√

4Cg+Cs

Cg√
4Cg+Cs

0
√

Cg(2Cg+Cs )

2(4Cg+Cs )
+ C1

2
· · ·

0 0 · · ·









(D4)

(we only need the first row here). We would like to decouple

ϕ̄ = ϕc − ϕg from the resonator variables ϕr,1 and ϕr,2. As

ϕ̄ does not appear in the potential energy [Eq. (24)], we can

basically transform it to any combination of the three variables

without changing U . Consider therefore the transformation

R =







1
Cg

4Cg+Cs

Cg

4Cg+Cs

0 1 0

0 0 1






, (D5)

which consists of the first row of the Cholesky decomposition

of C (rescaled to be unitless) and an identity matrix for

the other two rows. It is clear that the transformation R ϕ

leaves the resonator variables ϕr,1 and ϕr,2 untouched and

that therefore the potential energy is unchanged. The kinetic

energy, however, transforms to

T =
∑

i

(


0

2π

)2(
2 Cq,i + Ci + Cg

2
ϕ̇2

q,i +
1

2
˙̃ϕT C̃ ˙̃ϕ

)

(D6)

with

C̃ =









4Cg + Cs 0 0

0 C1

2
+ Cg(2Cg+Cs )

2(4Cg+Cs )
− C2

g

4Cg+Cs

0 − C2
g

4Cg+Cs

C1

2
+ Cg(2Cg+Cs )

2(4Cg+Cs )









(D7)

for ϕ̃
T = (ϕ∗,ϕr,1,ϕr,2), which is equal to the results given

in Eqs. (23) (for Cs = 0) and (26). Without changing the

resonator variables ϕr,1 and ϕr,2, we have thus gone to a frame

where the unwanted variable

ϕ∗ = ϕc − ϕg +
Cg

4Cg + Cs

(ϕr,1 + ϕr,2) (D8)

is uncoupled and can therefore be discarded.

As the first row of a Cholesky decomposition is usually very

simple, this method can be easily used in such cases, where

the kinetic energy includes more variables than the potential

energy (or vice versa).
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