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Qubit quantum-dot sensors: Noise cancellation by coherent backaction,
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We theoretically investigate the backaction of a sensor quantum dot with strong local Coulomb repulsion on the
transient dynamics of a qubit that is probed capacitively. We show that the measurement backaction induced by
the noise of electron cotunneling through the sensor is surprisingly mitigated by the recently identified coherent
backaction [M. Hell, M. R. Wegewijs, and D. P. DiVincenzo, Phys. Rev. B 89, 195405 (2014)] arising from
quantum fluctuations. This indicates that a sensor with quantized states may be switched off better than naively
expected. This renormalization effect is missing in semiclassical stochastic fluctuator models and typically also
in Born-Markov approaches, which try to avoid the calculation of the nonstationary, nonequilibrium state of the
qubit plus sensor. Technically, we integrate out the current-carrying electrodes to obtain kinetic equations for the
joint, nonequilibrium detector-qubit dynamics. We show that the sensor current response, level renormalization,
cotunneling broadening, and leading non-Markovian corrections always appear together and cannot be turned
off individually in an experiment or ignored theoretically. We analyze the backaction on the reduced qubit
state—capturing the full non-Markovian effects imposed by the sensor quantum dot on the qubit—by applying a
Liouville-space decomposition into quasistationary and rapidly decaying modes. Importantly, the sensor cannot
be eliminated completely even in the simplest high-temperature, weak-measurement limit since the qubit state
experiences an initial slip depending on the initial preparation of qubit plus sensor quantum dot. The slip persists
over many qubit cycles, i.e., also on the time scale of the qubit decoherence induced by the backaction. A
quantum-dot sensor can thus not be modeled as usual as a “black box” without accounting for its dynamical
variables; it is part of the quantum circuit. We furthermore find that the Bloch vector relaxes (rate 1/7;) along an
axis that is not orthogonal to the plane in which the Bloch vector dephases (rate 1/73), blurring the notions of
relaxation and dephasing times. Moreover, the precessional motion of the Bloch vector is distorted into an ellipse

in the tilted dephasing plane.
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I. INTRODUCTION

The ongoing effort to mitigate the qubit decoherence due
to environmental noise detrimental to quantum computing
has made substantial progress by identifying well-isolated
two-level systems [1-4] and developing efficient decoupling
techniques [5—7]. However, active readout elements must be
integrated into any quantum computer and “noise” from such
sensors may soon become a relevant source of errors. Therefore
the unavoidable disturbance of the qubit evolution during a
readout process gains importance, both for single-shot qubit
readout [8,9] as well as continuous qubit monitoring [10].
Another question of central importance for qubit manipula-
tions is which parameters should be varied to switch off a
sensor most effectively when no measurement is intended to be
made.

In a single-shot measurement, the goal is to achieve a strong,
projective measurement that dephases the qubit state as quickly
as possible. However, any measurement still takes a finite
time and relaxation processes [9], excitation processes [11],
and incoherent detector dynamics limit the detector efficiency
[12—15]. For continuously monitoring the qubit evolution, by
contrast, one has to realize a weak measurement. The aim
is here to disturb the qubit evolution as weakly as possible
to retain the (partial) purity of the quantum state [16] while
avoiding quantum jumps and the quantum Zeno effect [17].

2469-9950/2016/93(4)/045418(42)

045418-1

Understanding the backaction of a weak measurement is
therefore of great interest.

In this paper, we focus on the noninvasive, weak-
measurement backaction exerted on a qubit by a capacitively
coupled sensor quantum dot (SQD) [9,18]. SQDs are attractive
qubit detectors due to their strong tunability and higher
signal-to-noise ratio as compared to quantum point contacts
[19,20] and dispersive readout schemes [21]. This derives from
the fact that an SQD is an interacting quantum system. For
smaller quantum dots (QDs) than typically used for readout,
the electrons may even occupy discrete energy levels. The
required readout current easily leads to a strong nonequilib-
rium and nonstationary sensor state. This altogether makes
the description of the backaction arising from an SQD on
a qubit challenging. Thus typical weak-coupling approaches
to decoherence assuming an environment in equilibrium with
a continuous spectrum [22-28] cannot be applied here and
naive extensions are prone to errors as we will illustrate.
Understanding the intertwined evolution of SQD and qubit is
of key importance to understand the measurement backaction
[13,29-32].

Out of these challenges arises the question which physical
effects have to be included for a consistent description of the
measurement backaction of a sensor QD on a qubit. For the
qubit, we consider the simplest model that involves capacitive
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FIG. 1. Sensor quantum dot (SQD) tunnel-coupled to source and
drain electrodes and capacitively coupled to a qubit, whose different
logical states involve two possible positions, left and right, in a
double quantum dot. If the qubit electron is left (a) or right (b),
the Coulomb repulsion to the SQD electron is larger or smaller,
respectively, compared to the full delocalization of the qubit electron.

readout, a charge qubit, realized as a double quantum dot. An
important aspect lies in the type of setup considered, namely
that of indirect detection: one measures the conductance of
a sensor QD in the attached electrodes, while only the SQD
capacitively interacts with the qubit, see Fig. 1. To maximize
the sensitivity, the SQD is operated at the threshold to the
Coulomb blockade regime. Here, the conductance of the
SQD shows the strongest response to small qubit-induced
level shifts. Previous studies addressing the backaction of
an SQD on a qubit in this regime focused mainly on the
lowest-order approximation in the tunnel coupling I" of the
SQD to the attached electrodes [13,16,29-31,33], strictly
valid when operated in the single-electron tunneling (SET)
regime. There are two main reasons for going beyond this
approximation.

The first reason relates to the backaction on the qubit and its
dependence on the level position, experimentally controlled by
gate voltages. This is important since the level position is one
of the key experimental control parameters by which one can
try to switch off the sensor backaction. In this approximation,
the leading-order rates (SET o I') become exponentially small
when the level position (¢) of the SQD is tuned away from
the electrochemical potentials of the electrodes (u,). Thus,
when one is interested in the backaction at the onset of the
Coulomb blockade, next-to-leading order ocI'?> cotunneling
processes should also be accounted for because they are
only algebraically suppressed, scaling as 1/(e — ). One
would thus naively expect that the backaction is suppressed
only inversely proportional to the detuning from resonance.
Yet, level-renormalization effects should also be considered;
they lead to level shifts that depend logarithmically on the
level position & and therefore the response of the level
renormalization to the measurement perturbation also scales
as 1/(e — ). A central finding of our study is that level-
renormalization effects in fact mitigate the naively expected
cotunneling decoherence.
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A second reason for going beyond the lowest-order ap-
proximation comes in view when one takes into account
the experimentally used sensor signal: if one accounts for
the first nonvanishing contributions «AI'/T that produce a
nonzero sensor signal, one has to include also renormalization
effects since they appear in the same order. Basically, if one
has time to measure, one has time to fluctuate as well. As
already emphasized in Ref. [32], incorporating terms A"/ T
is another reason that forces us to keep also cotunneling
processes «I'?/ T since in the weak-measurement limit A < T’
the latter are larger. Only when one is not interested in the
sensor current, one can consistently neglect cotunneling and
renormalization effects by taking the high-temperature limit:
as we show, they must either be kept or neglected together.

The above-mentioned processes combine in a nontrivial
way to give three types of backaction on the qubit [32].
First, both SET and cotunneling processes contribute to a
stochastic switching of the SQD charge state. This switching
generates a randomly fluctuating effective magnetic field
acting on the qubit Bloch or isospin vector [26,27]. This
“noise”—called here the stochastic backaction—leads to a
shrinking of the Bloch vector, i.e., to decoherence. In addition,
there is a dissipative backaction, which is the flip side of the
measurement action: it arises whenever one accounts for a
nonzero response of the sensor SET tunnel rates to the qubit
state and therefore a nonzero sensor signal. Finally, there is a
coherent backaction, the most striking finding of Ref. [32].
It arises from the above-mentioned level-renormalization
response and translates into torque terms involving the qubit
Bloch vector. These torques and related precession effects
are similar to those emerging in various other QD transport
setups; it is well-known that tunneling processes can produce
exchange fields leading to an (iso)spin precession in the context
of spintronics [34,35], double dots [36], molecular quantum
dots [37,38], and superconducting devices [39]. All these
level-renormalization effects arise from quantum fluctuations
of electrons by tunneling into the attached electrodes. In this
respect, a qubit coupled to a sensor QD is not different.

An interesting question is how these different types of
backaction relate to the information gained during the mea-
surement process. Clearly, the quasistationary time-dependent
current through the sensor contains information about the qubit
state and at the same time causes decoherence of the qubit.
However, besides this fundamentally unavoidable backaction,
the decoherence induced by the detector can be stronger. This
can be formulated in terms of general inequalities relating the
noise of the measured operator (here the position of the qubit
electron) to the noise of the measurement signal (here the
current) and additional noise cross terms [40]. The situation
considered in this paper is far away from the quantum limit
(meaning the above-mentioned inequality is far from being
satisfied with equality).

A part of our work actually focuses on a simple limit when
only the stochastic backaction is accounted for but dissipative
and coherent backaction are neglected. The SQD then acts
rather as an “ordinary” environment and no information is
obtained during the operation—a situation relevant when the
detector is supposed to be switched off. Yet, even in this
simple limit, there are effects beyond the scope of the picture
developed in Ref. [40]: the fast relaxation due to switching on
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the sensor may affect the qubit state also in a way that depends
on the initial dynamical variables of the sensor. This is not
captured at all by the noise inequalities mentioned above. The
explicit time evolution of the sensor, which is not considered
in Ref. [40], is thus also crucial to understand the backaction
on the qubit. An interesting question arising from this insight
is how this backaction effect has to be assessed in view of the
information gain. Our work could thus spur new activity on
the topic of information gain during the measurement.

The impact of the three backaction effects on the full
transient dynamics of the qubit so far remained an outstanding
question that we address in this article (the analysis in Ref. [32]
was restricted to the stationary state). Our analysis is divided
into two parts.

Part 1. The main point of this paper is to eliminate
the electrodes’ degrees of freedom [33] and to analyze the
transient dynamics within the resulting physical picture of
the coupled SQD-qubit dynamics. In this way, we can deal
with the nontrivial interplay of the SQD-qubit coherence,
strong local Coulomb interaction in the SQD, nonequilibrium
conditions imposed by the attached electrodes, as well as
both leading (SET) and next-to-leading order effects in the
tunneling (cotunneling). The necessary inclusion of the latter
furthermore forces us to extend Ref. [32] by including also the
leading memory effects on the sensor-qubit system due to the
tunneling to the electrodes, which is necessary for the study of
the transient qubit dynamics. (For the stationary state, which
we studied in Ref. [32], they can be be ignored without making
additional approximations.) The importance of memory effects
for the dynamics when going beyond weak coupling is
known especially since Ref. [41], see also Refs. [42—47]
and progress for strong backaction [48,49]. Non-Markovian
corrections have also been studied in related contexts, such
as the backaction of a quantum point contact on a double
dot [45,48] or quantum-feedback control based on quantum
measurements [50,51]. The various effects of non-Markovian
processes remain, however, an uncharted territory [52].

The central result in our case are the kinetic equations
(26) for the system of qubit plus quantum-dot sensor. The
equations reveal the above three-fold nature of the backaction
of the sensor QD on the qubit; importantly, the relevant
energy scale for this backaction is not simply the internal
capacitive interaction A (SET-induced stochastic backaction)
but additionally involves the energy scale 'A/ T (dissipative
and coherent backaction involving transport processes).

Our kinetic equation furthermore allows us to identify
slowly evolving quasistationary modes—containing the qubit
evolution—and faster evolving decay modes reflecting the
dissipative SQD dynamics due to its coupling to the elec-
trodes. The coupling between these modes generates the total
backaction on the qubit and is mediated by all three types of
backaction. To account for all these backaction effects, it is
indispensable to keep the capacitive interaction (A # 0) when
integrating out the electrodes. In this aspect, our work differs
from the otherwise closely related approach of Ref. [53],
which starts out from the assumption that the electrodes affect
exclusively the SQD. There, all backaction effects derive only
from the internal interaction, i.e., the stochastic backaction.

A surprising finding of our analysis is that the total backac-
tion exhibits a strong reduction when tuning the SQD towards
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the Coulomb blockade regime: we find that the coherent
backaction actually cancels the cotunneling (“broadening”)
corrections in the coupling of the quasistationary to the decay
modes. This eliminates the naively expected leading power-
law dependence o1/(¢ — u,) of the backaction, affecting also
the decoherence time scales. This indicates that a sensor with
quantized orbital states can be switched off more efficiently
by controlling its gate voltage than naively expected, the
first important experimental implication of this article. This
requires, however, to prepare the sensor state in a controlled
way to avoid a slip of the qubit state (see part 2 below).

It is important to emphasize already here that the coherent
backaction, which is responsible for this mitigation, is not
an independent mechanism that can be “added” to counteract
cotunneling noise. Instead, it arises together with cotunneling
as an integral part of quantum fluctuation effects of the
qubit-sensor system when consistently describing all types
of backaction. Notably, we show that this mitigation is not
captured by widely-used classical stochastic fluctuator models
and can also be easily overlooked in Born-Markov approaches
that integrate out the entire environment of the qubit (i.e.,
including the SQD). The effect of the exchange of electrons
between the SQD and the electrodes can thus not be fully
captured by classical switching of the SQD charge state. We
also review and compare in detail our results with earlier works
and pinpoint a number of limitations of standard approaches.

The prominent role of renormalization effects underlying
the coherent backaction distinguishes a QD sensor with few,
discrete energy levels from what can be expected for a sensor
with a continuous energy spectrum. The recent study [54]
showed that similar torque terms appearing in a spintronic
context are much suppressed in single-electron transistors
(continuous spectrum) as opposed to QDs (discrete spectrum).
In the former case, renormalization effects tend to nullify
when averaging over their continuous energy spectrum. This
motivates the extensive analysis of the detection of a qubit
state by a sensor QD undertaken in this paper. Our work raises
the interesting question to which extent backaction effects due
to renormalization effects are suppressed in a single-electron
transistor.

Part 2. One might think that following the above de-
scription one can in a second step eliminate the sensor QD
from the description to obtain an effective theory for the
qubit only. However, already on general grounds, this is
questionable: specific to our indirect detection problem is
that the environment of the qubit is not stationary. Moreover,
initial correlations between SQD and qubit—both microscopic
systems—might exist. When integrating out the environment,
the factorizability and the stationarity of the environment
are, however, often invoked to eliminate the so-called slip
of the initial condition for the subsystem [55] coming from
the initial state of the environment and its short-time transient
evolution. To illustrate this point, we analyze in more detail the
simpler high-temperature limit where the complications due
to cotunneling and coherent backaction can be consistently
ignored. Even in this high-temperature, weak-measurement
limit the qubit develops a slip of order A/ I" on a time scale
t < 1/T, which is beyond the control over the qubit system
alone. The slip depends explicitly on the initial qubit-sensor
state. The second experimental implication of our work is
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that the dynamical state of the sensor and its correlations
with the qubit cannot be ignored and must be brought under
experimental control. This slip effect is cumulative, e.g., it
results in phase shifts that still affect the qubit on much
longer time scales t ~ 1/A > 1/T relevant to the readout.
By contrast, the relevant time scales 7} (relaxation) and 75
(dephasing) of the transient qubit dynamics for times ¢ >> 1/I"
do not depend on the initial sensor QD state.

The precession axis of the qubit Bloch vector also turns
out to be independent of the initial state. In the simple
high-temperature limit, we furthermore identify an additional
effect of the (purely stochastic) backaction, which is to induce
a tilt of the Bloch vector precession axis. We find that the
circular isospin precession becomes slightly elliptical in the
presence of the detector, adding as a fingerprint oscillations
to the exponential decay of the qubit-state purity. This mixes
the notions of relaxation and dephasing as we will see. It
is an interesting question how these effects behave at low
temperature and strong qubit-sensor coupling where they have
received little attention so far.

Outline. After this topical outline, we now present the
organization of the sections of the paper and the key equations.
In Sec. II, we briefly review the generic indirect readout model
of Ref. [32] and discuss the dynamical variables that are needed
to describe the mixed quantum state of the joint qubit-sensor
system. This requires two isospins, which capture both the
reduced qubit state as well as the correlations with the sensor
QD.

After this, we outline the key technical challenges of our
approach in Sec. III, deferring details to the Appendix A, and
we present the time-local kinetic equation (26) for the coupled
sensor QD plus qubit system. In Appendix A, we further dis-
cuss the importance of including non-Markovian corrections
to retain the positivity of the reduced density operator. Without
further approximations, we identify the relevant unperturbed
modes (A = 0) with the electrodes integrated out. From the
representation of the kinetic equation (56) in these modes we
prove the exact cancellation between the coherent backaction
and the cotunneling (“broadening”) noise [Eq. (62)]. We
furthermore study the implications for the dependence of the
total backaction on various experimentally relevant parameters
(tunneling-rate asymmetries, bias, and gate voltages). From the
formal solution of the effective quasistationary mode evolution
[Egs. (71) and (72)], with details given in Appendix B, we infer
that the qubit evolution is non-Markovian and exhibits a slip of
the initial condition that we characterize in Appendix C. Initial
slips generally go hand in hand with non-Markovian dynamics
as Refs. [43,55-59] and the references therein point out. Initial
entanglement between a qubit and its environment, one cause
of initial slips, can drastically affect the qubit coherence [59].

In Sec. IV, we attempt to integrate out the sensor QD
to derive an effective Liouvillian [Eq. (80)] that effectively
incorporates its fast switching dynamics. We then focus on the
analytically tractable case of high temperature. This suffices
to illustrate the general importance of initial slips in the
context of detector backaction [Eq. (81)], the breakdown of
orthogonality of relaxation and dephasing qubit modes, and
the exponentially damped oscillatory but elliptical precession
of the qubit Bloch vector. In this high-temperature limit,
we obtain tangible expressions for the qubit relaxation and
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dephasing rates, expanded to leading order in A/ I". In Sec. V,
we compare our results with semiclassical stochastic fluctuator
models as well as Born-Markov and exact quantum approaches
to provide further insight into the origin of the coherent
backaction. In the accompanying Appendix D, we show how
the coherent backaction affects the qubit phase evolution in
a way that is not accounted for by semiclassical stochastic
fluctuator approaches. We summarize our findings in Sec. VI.

II. INDIRECT DETECTION
A. Model

We analyze the indirect detection setup sketched in Fig. 1:
the readout (H;) of a double-quantum dot charge qubit (Hyp)
by a proximal sensor quantum dot (Hg), which in turn is read
out (Hy) by the conductance of the transport current in one
of the attached electrode reservoirs (Hg). The model we use,
discussed in detail in Ref. [32], thus consists of three “layers”
with their respective interactions:

H = Hy + (H; + Hs) + (Hr + Hg). (1

This models the essential physics found in many experiments
on QD qubits and can be extended to superconducting qubits
[60] as well as to spin qubits if measured by spin-to-charge
conversion [9,19].

Qubit. The qubit is realized as a charge qubit, a single
electron occupying a double quantum dot. This electron can
reside either on the left dot, denoted by the state |L), or on
the right dot, denoted by the state |R). The qubit state is
represented by the ensemble average T = () of an operator 7
(corresponding to an isospin T /2) with components

=Y (o). )

I,I'=L,R

Here, o; denotes the Pauli matrix for i = x,y,z. The average
z component T, quantifies the imbalance between the proba-
bilities for finding the qubit electron in the left orbital rather
than in the right orbital, while 7, and 7, quantify coherences
between the left and right occupation. The general form of the
Hamiltonian of the isolated qubit is

Hy =2 %/2, 3)

in which the qubit field @ is used in applications to control
the qubit evolution: it induces coherent tunneling of the qubit
electron between the two dots (£2,, €2,) combined with a
detuning (£2;). In our analysis, 2 is constant in time and later
on, when we discuss tangible results, we will chose 2 = Qe,.
However, unless stated otherwise, we first keep 2 general.
Sensor quantum dot. The sensor quantum dot (SQD or
sensor QD) is modeled as a single, interacting, spin-degenerate
orbital level with Hamiltonian Hy = it + Ufi4ii . Here, i, =
d(",' d, 1s the number operator for electrons with spin o = 1, |,
where d, denotes the corresponding field operator, and 7 =
iy + 17 is the total electron number operator. We take the
Coulomb repulsion energy U here to be the largest energy scale
(except for the bandwidth 2W of the electrodes), in accordance
with typical experimental situations. We therefore exclude the
double occupation of the sensor QD orbital in the following.
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This allows us to reduce the model to

Hy=¢P', P'=Y lo)(ol, )
o

if we accordingly adjust the high-energy cutoffs in the
electrodes [discussed below Eq. (31)]. In the considered
subspace, we can replace i = P'. For the readout one tunes
the level position € = —V, by a gate voltage V, close to the
electrochemical potentials of one of the electrodes. While the
spin of the qubit electron is irrelevant (it was not written
above since the readout couples to the charge, see below),
it is important to include the spin degree of freedom of the
SQD because the spin degeneracy enters into the tunneling
rates.

Electrodes. The final stage of the readout involves the
electrodes, treated as noninteracting reservoirs of electrons
with spin:

Hp = Z Wrko Cerg Crko s (5)

r.k,o

with the field operators ¢, (cika) acting on the electrons

in orbital £ with spin ¢ in the source (r = s) and the drain
(r = d), respectively. These are each held in equilibrium with
a common temperature 7', but at different electrochemical
potentials gy = Vp,/2 and puy = —V,,/2 by applying a bias
voltage V.

Readout. The indirect readout of the qubit state using the
sensor QD involves two couplings: the first one is the capacitive
interaction of the SQD electron charge 7i with the charge
polarization 7, of the qubit:

H; = A\ - /2. (6)

The measurement vector A specifies both the basis in which
one measures and the measurement strength A:

A = de,. )

Thus, depending on the qubit state, the sensor QD level
experiences an energy/gate-voltage offset of at most £A/2
[see Figs. 1 (a) and 1(b)]. This in turn affects the conductance
measured in one of the electrodes due to tunneling to and from
the SQD:

Hr = Z t,dic,k(, + H.c.

r.k,o

®)

The strength of this second coupling involved in the readout is
quantified by the tunnel rates I', = 2x |7,|?v,, where we take
both the tunneling amplitude 7, and the density of states v, to
be spin (0)- and energy (k)-independent within the electrode
bandwidth 2W.

The threefold layered structure of this indirect detection
(negligible direct coupling of the electrodes to the qubit)
is reflected in our theoretical analysis of the measurement
backaction. In Sec. III C, we first eliminate the “outer” de-
tection layer—the electrodes—in favor of effective equations
describing the joint SQD-qubit dynamics.! In Sec. IV, we

The first step of our approach is in principle generally possible
at least for weak tunnel coupling I', i.e., not limited to the weak-
measurement situation we study in this paper.
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then attempt to integrate out the “inner” detection layer—the
SQD—to find the effective qubit evolution.

B. Weak-measurement and weak-tunneling limit

We consider a sensor with a fast response, i.e., the internal
dynamics of qubit plus sensor QD is slow as compared
to the electron tunneling dynamics induced by the attached
electrodes:

A~ArQ « T. 9

This condition means physically that many electrons pass
through the SQD during its interaction time with the qubit
(A K I')—a weak measurement is performed. Moreover, if
lies in the x-y plane, the internal qubit evolution describes a
coherent tunneling of the qubit electron with dwell times of
electrons in the SQD that are much smaller than the period of
a qubit cycle (2 « T'). Each electron sees a “snapshot” of the
SQD-plus-qubit state. If we assumed I' < € instead (but still
weak measurement A < I'), the readout would be too slow to
resolve any qubit evolution.

As we see below in Sec. III, the leading-order response of
the tunnel rates to a measurement-induced gate voltage offset
~ A is given by I'A/T. This, in return, induces a dissipative
backaction affecting the polarization of the qubit that also
scales as I'A/T. Moreover, when condition (9) holds, the
tunneling also affects the isospin coherences of the qubit-SQD
state. This is well-known from the analysis of two-level
systems coupled to a reservoir. Here, the density-operator
coherences in the energy basis matter when the levels (here
split by A) are degenerate on the scale of the coupling (here
I') to the environment. In our case, the two levels correspond
to the sensor QD and the qubit, each being a two-state system.
One has to carefully identify which coherences are relevant,
which is done below in Sec. I C. These coherences are affected
by tunneling processes; the simple physical intuition behind
this is that if an electron on the sensor has time to interact
with the qubit and change the current, it certainly has time
to fluctuate into the electrodes. This leads to a response of
the level renormalization and results in a coherent backaction
which scales as 'A/ T, i.e., in the same way as the response of
the sensor tunneling rates results in the dissipative backaction.
This is a central result of Ref. [32] and here we explore its
effect on transient dynamics.

It should thus be noted that the energy scale for backaction
on the qubit is not simply A (from the internal interaction H;)
but also AI'/ T, the scale of effective dissipative and coherent
coupling between sensor QD and qubit, which are induced
by tunneling processes. In a way, these couplings account
for an indirect interaction of the qubit with the electrodes
extending the approach of Ref. [53]. This is thus another
relevant perturbative scale for a weak-measurement expansion,
besides the scale X itself, see Ref. [32] for a detailed exposition.

Another crucial point for this work is that if terms of
order '/ T are taken into account and A < T, then ar least
cotunneling terms scaling as I'>/7 must also be accounted
for (if not even higher-order tunneling terms). We can neglect
higher-order tunneling processes beyond cotunneling if we
restrict the temperatures such that

/T < . (10)
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This condition means that the cotunneling-induced noise
imposes only a weak perturbation of the qubit. Taken together,
we employ here a weak-coupling limit in fwo ways, namely
that of weak measurement and weak tunneling:

I''T <K A/T <K 1. (11)

Note that by Eq. (10) this imposes a stronger condition than
the usual weak-tunneling assumption I'/T < 1 alone. We
next discuss the dynamical variables needed to describe the
measurement backaction.

C. Charge-specific isospins and qubit decoherence

To describe both the backaction of the sensor on the qubit
as well as to compute the signal current through the sensor
QD, one needs at least the reduced density operator p(¢) of the
combined qubit plus SQD system obtained by tracing over the
electrodes. Even though we do not analyze the sensor signal
here, the signal is of course of high interest to gain insight into,
e.g., the efficiency of the measurement [12—15]. Studying the
backaction in a situation where the sensor signal current is
not negligible, is an experimentally highly relevant situation,
which we pursue in this paper.

The relevant part of the SQD-qubit density operator p(f)
can be expanded as follows [32]:

p(t) = % Z P [p"(r)fl +2 r,f’(r)f,}. (12)

Here, P" denotes the projector onto the charge states n = 0, 1
of the sensor QD. The numbers p"(t) = tr(P" p(1)) give the
probability for the sensor QD to be in the respective charge
state n = 0,1, which for any time ¢ sum up to one due to
the probability conservation: p® + p! = 1. The only irrelevant
coherences (off-diagonal matrix elements in the energy basis)
of p are those involving different charge states on the sensor.
These can be shown to decouple from the relevant part due
to the charge conservation by the tunneling. However, all
remaining qubit-SQD density matrix elements including their
coherences must be kept in (12). These are the six numbers
T'(t) = tr(ﬁ”fi p(1)), which are the averages of the isospin
componentsi = x, y, and z for the two sensor QD charge states
n = 0 or 1, respectively. To describe the correlated SQD-qubit
system, one thus needs two charge-specific isospins 7% and 7.
Based on Eq. (12), it is convenient to introduce the following
column representation of the density operator:

0

L I IS TN

1
ol (13)
1

In this form, one distinguishes the charge and isospin part,
respectively, but the isospin part is still kept basis independent.
In other words, we may represent 7° and 7! in a different
orbital basis than the one used in definition (2) if we transform
the directions of A and 2 accordingly.

We now further explore the physical meaning and impor-
tance of the two charge-specific isospins. By construction, they
sum up to the total isospin,

r=1"+17!, (14)
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which is often of main interest. This is the usual Bloch vector
that describes the state of the qubit, i.e., its reduced density
operator. One can easily show that a single Bloch vector can
describe the joint SQD-qubit state only if it is factorizable. In
other words, if

A 1
0 =ps®po= (; p”P") ® §<1 +Zfi(t)fi>a (15)

then the charge-specific isospins are given by t° = pr and
! = p't, respectively, by comparing Eq. (15) with Eq. (12).
The other combination of the two isospins,

§:=pPr! — p'c°, (16)

quantifies the nonfactorizability of the qubit-sensor density
operator:

p=ps®@pg & 8=0. (17)

We emphasize that the nonfactorizability is crucial to describe
the readout and its backaction on the qubit state T. We will see
in Sec. III C 1 below Eq. (54) that the deviation § has no impact
on the qubit evolution only if the qubit and sensor are strictly
decoupled (1 = 0). For the coupled case (A # 0), which is of
interest, we have to keep the individual dynamics of 7° and
Tl

The relevance of the two isospins for the decoherence can
be seen explicitly from the equation of motion for |z()|?,

which characterizes the purity of the isospin state:

d
E[|r|2]=2t-r=—2x.(r°><r‘), (18)
where we inserted after the first equality
T=@x1+Axtl (19)

Equation (18) is an exact result which can be obtained from
the Heisenberg equation of motion for T with respect to the
full Hamiltonian (1). The only essential assumption on which
Eq. (18) relies is the indirect readout structure of our setup,
ie., [Hr,Hp] = 0. It thus holds generally for any £ and any
tunneling I". Preservation of this exact equation imposes an
exact isospin sum rule [discussed below Eq. (26)], which any
kinetic equation for p should satisfy. This was only realized
recently, see Refs. [61] and [32] and Appendices D and E.

Equation (18) shows that the reduction of the purity of
the qubit state appears only due to noncollinearities of T° and
7!, These noncollinearities develop because of the readout: the
isospins 7° and 7' are subject to different effective “magnetic”
fields depending on the charge state n of the sensor QD. To
see this, we rewrite Hp + H; = ﬁeff(ﬁ) - T/2 with an effective
field acting on the isospin T,

B = © + AoA, (20)
where 84 = it — () and (A1) = tr(P'p) = p'. Here, the first
part is the mean field,

Q= Q+ (WA, (21)

which the isospin experiences due to the internal isospin
field £ and the average field caused by the mean charge
(i) = p' on the sensor QD with respect to the exact total
density operator p. The mean-field contribution € to B is
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the same for both charge-specific isospins, 7° and !, and
therefore not responsible for the qubit-state decay. The mean
SQD occupation (i) = p' merely tilts the qubit precession
axis and changes its frequency by contributing to the detuning
of the charge qubit. Note that the average is here an ensemble
average but not a time average since p' = p'(¢) can change
in time with the state p(#). The qubit decay is induced by
the second, fluctuating contribution A7 to Eq. (20), where
6n = ii — (n) is the charge-state dependent deviation from the
mean field. This generates a noncollinearity of 7° and 7',
which reduces the purity of the qubit state by Eq. (18).

Even though our approach does not make use of the
decomposition into a mean-field and a fluctuating part, we
can identify both effects in our results in Sec. III E. We will
first identify p' = pl with the state of the SQD in the
stationary limit, in which the ensemble and the time average
are equal. We further connect more precisely the decoherence
rates to the components of the fluctuating part A87 along and
perpendicular to the mean field € in Sec. IV A (in accordance
with the literature [26,27]). This accounts for what we call
stochastic backaction on the qubit by the sensor QD. This
effect is also present for single-electron transistor sensors with
a continuum of electronic levels, but (classically) quantized
charge states.

However, there are also a dissipative and a coherent
backaction effect [32] (see Sec. IIB). As we discuss below,
they modify the relative orientations of z° and 7! and therefore
affect the qubit decay as well. This mechanism—first noted in
Ref. [32]—derives from a renormalization effect induced by
the interplay of the readout interactions (1) and the tunneling
on and off the sensor QD (I") as discussed in Sec. III. It results
in isospin torques similar to those encountered in spintronic
QD setups. As mentioned in the introduction (Sec. I), the
prominent role of renormalization effects distinguishes a QD
sensor with few, discrete energy levels from sensors with a
continuous energy spectrum.

Finally, we note from Eq. (18) that the Bloch vector may
not just shrink exponentially. We will find that 7° and 7!
perform different precessional motions (due to both ﬁeff and
the coherent backaction being dependent on the charge state
of the sensor), which implies that the component of 7° x 7!
along the measurement vector A also oscillates in time. Thus
the rate of decay of the purity is not purely exponential but
additionally oscillates in time as explicitly confirmed by our
analysis in Sec. IV D. This illustrates that the motion of the
charge-specific isospins is closely related to the qubit decay.
Accounting for the interplay of their dynamics turns out to be
the key to set up a correct description of the transient qubit
dynamics that includes all the different types of backaction.

III. QUBIT-SENSOR QUANTUM DOT DYNAMICS
A. Outline

The indirect measurement setup introduced in the previous
section poses several challenges for the theoretical treatment
of the measurement backaction. A central complication is that
the environment of the qubit (the SQD plus the electrodes) is
not in a simple equilibrium state since the detection is done
by nonequilibrium transport. But even when specializing to
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near-equilibrium conditions, one has to treat the SQD as a
strongly interacting quantum system with spin degeneracy.
Both the nonequilibrium conditions and the interactions in the
SQD prevent a simple direct approach where one averages over
the environmental degrees of freedom, leaving only the qubit
degrees of freedom. Moreover, to obtain the sensor current, we
need to retain the sensor degrees of freedom as well. As we
discuss in Sec. V B, specifying the environmental state is the
main difficulty when trying to directly calculate the evolution
of the qubit density operator for an indirect detection setup.

Therefore we integrate out only the electrodes to obtain
the density operator p for the joint qubit-SQD system. The
resulting equation, which is of the form

d t i L 22
dtp()— iLp(2), (22)

is given below [Eq. (26)] and is the first main equation
of this work. Our main conclusion is that this provides a
systematic description of the measurement backaction: in the
weak tunneling, weak measurement limit I'/7T < /T <« 1,
itdoes not get any simpler without making drastic concessions.
Yet, a mere reformulation of Eq. (26) [see Eq. (56)] already
provides important insights into the measurement backaction.

Still, we will also describe an attempt to eliminate the
SQD degrees of freedom in the high-temperature limit where
corrections I'/T can be dropped. This results in an effective
Liouvillian L that reproduces the outcome of Eq. (22) for
the evolution of total average isospin operator, T(t) = (T) =
7°(t) 4+ 7'(1), in the long-time limit,

%r(t) = —iLlegt(r) (t—10> 1/1),
with initial time #y. The preparations for this step provide
interesting insights into Eq. (22). However, Eq. (23) turns out
to be invalid for small times ¢t — o < 1/T. The error made
when still using Eq. (23) to compute t(¢) starting from ¢ = £,
for t —ty > 1/T" can be compensated by a correction to the
initial condition z(#j), a so-called initial slip. This correction
depends on the initial qubit-sensor state in an essential way,
preventing the sensor from being integrated out completely.
Before we discuss the details, let us first outline the further
challenges posed in deriving the above two equations.

The derivation of Eq. (22) has to include various effects:
First, since we incorporate the measurement backaction terms
~I'A/T, we must also include next-to-leading order tunnel
processes ~I"2/ T into the kinetic equations for the SQD-qubit
evolution (see Sec. II B). We have given such a consistently
expanded kinetic equation in Ref. [32]. However, there we
employed an additional Markov approximation with respect to
the electrodes, which is valid to obtain the stationary long-time
limit studied in Ref. [32]. Here, by contrast, we are interested in
the transient dynamics, where non-Markovian effects induced
by the electrodes must be accounted for, as we explain in
Sec. I B 1. We include the required leading non-Markovian
correction perturbatively in the tunnel coupling I' along the
lines of Refs. [41-44,46,62]. We present and explain the
resulting time-local kinetic equations in Secs. I[II B 2-III B 4.

We next analyze in Sec. III C how the qubit is affected by the
measurement within the resulting description. For this purpose,
we first solve in Sec. IIIC 1 the kinetic equations for zero

(23)
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capacitive interaction A = 0. An important step is to identify
a set of quasistationary modes that contain the degrees of
freedom of the qubit only, i.e., T = 7° + 7'. This identification
remains valid also for nonzero capacitive interaction A # O.
The time scale ~1/2 for the evolution of these modes—
connected with the slow qubit dynamics—is well separated
from that for the evolution of the residual decaying modes.
Those are strongly damped on a short time ~1/I" due to
the fast tunneling dynamics of the SQD. We then introduce
new dynamical variables to analyze the coupling between the
quasistationary and decay modes in Sec. III C2 for nonzero
capacitive interaction A. This will reveal the mitigation of the
measurement backaction by the coherent backaction, the first
key result of the paper. Finally, we derive the evolution of the
quasistationary modes by effectively incorporating the impact
of the decay modes (see Sec. II1 E). Importantly, the resulting
equations are not independent of the detector evolution and
even in the long-time limit an explicit dependence on the initial
overlap with the decay modes remains as we will see in Sec. [V

B. Kinetic equation
1. Integrating out the electrodes

Whenever the time evolution of an open system is consid-
ered, non-Markovian features arise from the memory of the
environment, that is, its correlation functions decay within
a nonzero correlation time t¢ [63,64]. When integrating
out the environment (here the electrodes, see Fig. 1), the
time evolution of the reduced density operator p(t) of the
open system (here the SQD plus qubit) is governed by a
time-nonlocal kinetic equation:

t
p(t) = —iLgsp(r) +f dt'W — t)p(t). 24)
fo

Here, Lyse = [Hp + Hs + Hj,e] is the internal Liouvillian
of the reduced system with “e” denoting the operator the
Liouvillian acts on. Moreover, all effects of the environment
are contained in a kernel W that we compute by a real-time
diagrammatic approach [65,66]. If the initial value p(fy) is
specified, Eq. (24) can be used to compute p(¢) without
explicitly keeping track of the state of the electrodes. A
key assumption enabling such a closed description of p(f)
is that the reservoir is stationary, i.e., [Hg,pg] = 0, which is
satisfied here because we assume the electrodes to be a thermal
equilibrium state pr (see, e.g., Ref. [65]).

J
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When calculated to leading order in I', the kernel roughly
decays as W(t — t') ~ Te~=")/% with correlation time 7o ~
1/T [64]. Within the Markov approximation with respect
to the electrodes, one replaces W(t —t') = W(i0)s(t — t'),
where on the right-hand side W(z) = fooo €' W(t) denotes the
Laplace-transformed kernel. This yields a time-local kinetic
equation dp/dt ~ (—iLgs + W(i0))p(¢) when inserted into
Eq. (24). In general, (—iL g5 + W(i0))ps = O determines the
exact stationary state, a fact which is often overlooked but
easily shown [65]. Physically, this makes sense since a nearly
constant state cannot “remember” much. As p(t) approaches
the constant stationary state pg, non-Markovian corrections
in Eq. (25) become weaker [for fixed ¢’ the memory kernel
W(t — t’) decays as ¢ increases].

To go beyond this Markovian approximation to obtain the
transient dynamics, we include the non-Markovian corrections
induced by the electrodes perturbatively in I'/ T. To do so, we
insert the Taylor expansion for the reduced density operator

o) = pt) + p)(t" — 1)+ -+, (25)

recursively into Eq. (24), as explained in Refs. [42,46]. As
we argue in Appendix A 1, the derivatives d" p/dt" are on the
order of I'", and we estimate (' —¢)" < tf ~ 1/T" within
the correlation time of the kernel. Thus higher-order terms in
the expansion (25) correspond to higher orders in the tunneling
expansion in I'/ T'. Truncating the expansion after the leading-
order memory correction (n = 1), one can derive a time-local
kinetic equation for p(r) as we show in Appendix A 1.

The above treatment is closely related to the techniques
developed for full counting statistics [41,43,44] and to the
recent study in Ref. [62]. There is also a conceptual connection
to time-convolutionless master equations [67—69]. In the
latter approach, the full density operator evaluated at time
t' is obtained by evolving the full density operator at time
t backwards in time before integrating out the electrodes,
resulting also in an effectively time-local kinetic equation.

2. Kinetic equation

Including all terms of order A, I', as well as 2 /T and
AT/T, where A ~ Q,X, as well as the leading memory
corrections, we obtain the kinetic equation expressed here in
the representation (13) of p (no time arguments written):

p° 2990 4yl +2cA- +cA- p°
alp|_ [+ - —2¢A- —cA- p! 26)
dr | ©° +2ch Heh 290+ (R —kA)x +yl+ih/2x |

7! —2ch —ch +2y° +kAx —yl @+ —kr/2)x 7!

When computing the matrix product with the column vector
in the above equation, the dot “” (cross “x”) in the entries
of the matrix indicates that a three-dimensional scalar (vector)
product is to be formed with the corresponding entries of
p. The above equation is valid under the weak-coupling
assumption I'/T « A/ T" « 1 introduced in Sec. IIB such

(

that corrections of order I'*/ T2, T?A/T?, and T'A%/T? can
be neglected.

The above kinetic equation is the first central equation
of this paper. It goes beyond a simple master equation by
including all relevant coherences (see Sec. II C) and extends the
kinetic equation of Ref. [32], which is Markovian with respect

045418-8



QUBIT QUANTUM-DOT SENSORS: NOISE CANCELLATION ...

to the electrodes, to access the transient dynamics by including
the kernel frequency dependence. The kinetic equation (26)
respects the probability conservation, p° + p' = 0, and also
the recently found [32] exact isospin sum rule (19), t° + ¢! =
@ x 7 + A x !, The latter derives from the conservation of
the total isospin, T = 7%+ 7!, when electrons tunnel from
the electrodes into the SQD and vice versa, a generic feature
[61] of indirect measurement models of type (1). We next
discuss the expressions and physical significance of the four
new coefficients yo,yl, ¢, and « occurring in Eq. (26); for the
definition of A and 2 see Egs. (7) and (3), respectively.

3. Stochastic, dissipative, and coherent backaction

First, Eq. (26) incorporates the SQD switching rates y%! =
3", y%! with contributions from each junctionr = s,d reading

yM =3 Lan R+ Y S e,

r=s,d qg=s,d

F Y SEef+ )] @7

q=s.,d

where 0, 1 corresponds to £. Let us first focus on the meaning
of the three different physical terms in Eq. (27). The first term in
the first line of Eq. (27) is the sequential tunneling contribution,
whose dependence on the voltages is governed by the Fermi
functions f,_i =f *((e — wur)/ T) for electrode r = s,d with
ffx)=1/(¢*—1) and f~(x) =1— fT(x). We comment
on the non-Markovian correction factor  [Eq. (36)] in Sec. III
B 4. The second term is a correction to the sequential tunneling
rate accounting for a renormalization of the level position ¢,
incorporating the derivative of the Fermi function,

a +
gy =Y - S , (28)
X lx=(e—p)/T
and the renormalization function,
¢r = (e — )/ T), (29)
with
+A d +
¢>()—P/ yf(y) (30)
T X —

A
n[ Re w( +zg>+ln<g)i|. (31)

Indeed, combining this second term with the first, f,i(e) +
(fri)’(s)(S/T) ~ fri(s+8), one identifies the shift § =
3 ¢ Va®Pal2. The function ¢(x) is plotted in Fig. 2 and shows
a maximum at x = 0 with logarithmic tails. In Eq. (30),
‘P denotes the principal value of the integral with a cutoff
A = W/T, yielding the real part of the digamma function
Y with a logarithmic correction. The latter depends on the
electrode bandwidth W, which must be set to W ~ U, where
U is the large but finite local Coulomb interaction energy of the
SQD (we excluded the doubly occupied state from the SQD
Hilbert space).

The term in the second line of Eq. (27) relates to the
cotunneling processes through the SQD, which incorporates
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FIG. 2. Renormalization function ¢(x), Eq. (30), and its deriva-
tive ¢'(x) = d¢(x)/dx. For illustration purposes, we chose A = 15
to be rather small, noting that A only shifts the ¢ vertically and drops
out in ¢’ [see Eq. (31)].

the derivative of the renormalization function,

LG

T ax

, (32)
x=(e—u,)/T
which is also plotted in Fig. 2. The contribution from each
electrode r changes its sign close to the resonance & = u,
and takes its extremal values of ¢, ~ F0.143 at ¢ — u, ~
4+1.911T. While the terms in the first line of Eq. (27) depend
exponentially on the distance to the resonance |¢ — .|, the
cotunneling term is only algebraically suppressed, since”

, 1T
N —— forle —u, | > T (33)

and 2/ + f~ = f;7 + 1 > 1in Eq. (27). When these terms
are added together, they result (for each electrode r) in a
temperature-broadened step function, which approaches its
asymptotes algebraically. Therefore this must be accounted for
when studying the qubit-sensor dynamics at the onset of the
Coulomb blockade where typically the readout is performed.

All the above-mentioned tunneling processes contribute to
a stochastic switching of the SQD occupation n, which results
via the capacitive interaction H; = ik - /2 in a fluctuation
of the effective field B; = 2 + nA acting on the qubit as
explained in Sec. II C [see Eq. (20)]. The importance of the
capacitive interaction to produce this stochastic contribution
to the total measurement backaction becomes apparent when
rewriting the kinetic equation (26) in terms of quasistationary
and decaying dynamical variables (see Sec. III C 2). It causes
the decoherence of the qubit already in the lowest order as we
show in Sec. V.

Before we enter the detailed analysis of the next-to-leading
order corrections, let us right away indicate their importance
for the stochastic backaction on a more qualitative level. In
Fig. 3, we compare the evolution of the x-component t,(f)
of the isospin, obtained by solving the kinetic equations (26),
when higher-order terms are included (red) or neglected by
hand (green). The figure illustrates that noise from oT?)
terms indeed contributes to the qubit decoherence as naively

2Here we use Re (1/2 +ix/2m) ~ In |x| for |x]| > 1.
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FIG. 3. Modification of the sensor backaction due to the next-to-
leading order I'? stochastic backaction and the coherent backaction.
Shown is the x-component of the isospin, 7,(t) = t0(t) + 7!(¢) as
a function of time. The isospin is obtained by solving the kinetic
equations (26) when all terms are taken into account (blue), when
higher-order I'> corrections are neglected (green), or when the
coherent backaction ok is neglected (red). One can see that the isospin
precession period is larger if next-to-leading-order contributions are
neglected since the isospin experiences a different mean field as
a consequence of the differing average occupation (n). The time
is given for all three curves in the same unit, the inverse of the
natural frequency for the full result, & = /Q2 4 ((n)A)?, which is
the precession frequency including next-to-leading corrections. We
insert here (n) = pl =2y°/y from the stationary solution of the
full kinetic equation (26) at A = 0 [see Eq. (49)]. The parameters
are 'y =Ty =027, A = 0.02T, Q = 0.001T, V, =0, V, = —3T,
W = 1000T . Initially, the sensor is empty, p°(0) =1 — p'(0) = 1,
and conditional upon this, the qubit isospin vector is prepared
perpendicular to the measurement vector, T°(0) = e, and 7'(0) = 0.

expected. On a quantitative level, however, one would expect
an algebraic suppression of the measurement backaction with
¢ based on Eq. (27) when entering the Coulomb blockade
regime. It will turn out in Sec. III C 3 that this expectation is
incorrect, i.e., the backaction is weaker than expected.

We further see from Fig. 3 that the oscillation period of
the qubit is notably changed due to next-to-leading order
corrections. This is due to the mean field, @ = @ + (n)A,
acting on the qubit in the presence of the sensor QD. The
average occupation (n) = p! on the sensor is significantly
modified by higher-order tunneling terms (see Sec. IV B 1).

In addition to the stochastic backaction, there is also a
dissipative backaction of the SQD on the qubit: These terms
are related to the isospin-charge conversion rates ~ cA with
coefficient

I, o
C_Zﬂ( £ (34)
This coupling appears in two ways. The isospins influence the
SQD dynamics (allowing for the readout) and vice versa the
SQD occupation probabilities directly influence the isospins
(backaction). This dissipative backaction drives the sensor QD
and qubit into a correlated state in the stationary limit, in
contrast to the stochastic backaction, which only changes the
occupation probabilities of the qubit state. For the parameters
chosen for Fig. 3, the dissipative backaction has a negligible
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impact on the qubit evolution and therefore we show no
comparison. The reason for this suppression is that the SQD
is already mildly Coulomb blockaded for these parameters
and the dissipative backaction is exponentially peaked around
the resonance as Eq. (34) shows. The dissipative backaction
therefore only becomes relevant close to resonance.

Finally, there is a third type of backaction: the tunneling
gives rise to isospin torque terms ~ «x A, where

k=) %zpi, (35)

incorporates the derivative of the renormalization function
shown in Fig. 2. This signals the coherent nature of this
contribution to the backaction: it characterizes the response
of the sensor QD level renormalization to a change in the
state of the qubit. Similar to the cotunneling corrections,
the coherent backaction gains importance with the onset of
Coulomb blockade [32].

The importance of coherent backaction for the qubit evolu-
tion stands outin Fig. 3. We can see that neglecting the coherent
backaction (red) noticably (but artificially) enhances the qubit
decoherence as compared to the full solution (blue). This
points to a cancellation effect between coherent backaction
and cotunneling noise that we discuss in detail in Sec. III C 3.
We further note that the coherent backaction has a negligible
effect on the qubit oscillation period [the period is the same
for both the curves including O (I'?) corrections]. The coherent
backaction can thus not be interpreted as a simple correction
to the qubit mean field (21); it is the joint system of qubit and
sensor QD that is renormalized and not just the qubit system.
We finally emphasize that even though Fig. 3 shows theoretical
results when different contributions of the kinetic equation are
neglected, they cannot be switched off individually in a real
experiment—there they always appear together and have to be
taken into account altogether.

4. Impact of non-Markovian corrections

It remains to discuss the three ways in which non-
Markovian corrections induced by the electrodes are contained
in Eq. (26) and how the latter differs from the Marko-
vian kinetic equations (Eq. (18) of Ref. [32]). First, the
non-Markovian corrections modify the leading-order SQD
tunneling rates [see Eq. (27)] just by introducing the prefactor

r, ,
n=1+) —4l. (36)

Since the correction n — 1, the cotunneling broadening term
[see Eq. (27)], and the coherent backaction coefficient « [see
Eq. (35)], all depend on the same factor Zr I/ T¢, with
algebraic tails, the non-Markovian effects should clearly be
accounted for.? The correction factor  — 1 is an appreciable

3Note that we investigate the impact of the coherent backaction by
setting here and below “by hand” ¥ = 0 in our results. Although one
can express the non-Markovian correction factor as n = 1 + k, we
do not set n = 1 since this would affect the stochastic backaction and
would not lead to the comparison we intend to make.
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quantitative correction that yields a contribution of O(I'2/T)
to the switching rates [42]. However, in contrast to the
cotunneling and coherent backaction, the correction n — 1 is
multiplied with the exponentially scaling SET contribution
[see Eq. (27)] and therefore it has no qualitative impact here.

By contrast, the second type of non-Markovian correction
affects the coherent backaction terms by qualitatively changing
them in general relative to the Markov approximation. The di-
rection of the tunneling-induced isospin torque terms changes;
in Ref. [32], we also found a contribution to the coherent
backaction ok 2. These terms are canceled out here up to
O('2/T)= O('A/T). This is expected on physical grounds
as the backaction is mediated by the capacitive interaction A
and therefore we expect these terms to vanish when setting
A = 0. We emphasize that the isospin torque terms xx 2 x t”
do not affect the stationary state, which we studied in Ref. [32],
and therefore all the conclusions drawn in Ref. [32] remain
valid. The third effect of the non-Markovian corrections is a
sign change of the isospin torque terms ~ kA in the last column
of the matrix (26) as compared to Ref. [32].

Both the above modifications of the coherent backaction
have important physical consequences illustrated in Ap-
pendix A 2; if one naively computes the transient dynamics of
the SQD-qubit system using the equations of Ref. [32], which
neglect non-Markovian terms induced by the electrodes, one
obtains exponentially increasing transient modes leading to a
violation of the positivity of the density operator. Moreover,
within the Markovian approximation the coherent backac-
tion strongly enhances the measurement backaction in the
Coulomb-blockade regime for a large parameter regime, while
the coherent backaction suppresses the measurement back-
action for nearly all parameter values when non-Markovian
corrections are correctly accounted for (see Appendix A 2).
This clearly illustrates that non-Markovian corrections go hand
in hand with renormalization effects, which in an indirect
measurement setup go hand in hand with the cotunneling
effects of the sensor rates. All of these are of vital importance
for describing the indirect measurement.

C. Coupling of modes

With the kinetic equations (26) now in hand we can proceed
to analyze the measurement backaction, but still without
integrating out the sensor. To achieve this goal, we make use of
the separation of different time scales in the coupled evolution
of SQD and qubit in the weak-coupling, weak-measurement
limit I'/T <« A/T" « 1. To identify these time scales, we
first solve in Sec. IIIC1 the unperturbed problem of the
decoupled SQD-qubit system (A = 0) as described by Eq. (26).
This produces eigenmodes which are well-separated in energy
by I' > Q and correspond to the wide-band limit for the
sensor quantum dot. It turns out that one needs to compute
the evolution of only a part of the modes—referred to as
the quasistationary modes in the following—to construct the
evolution of the total isospin 7.

In Sec. IIC2, we restore the coupling A and by simply
writing the kinetic equation (26) in the basis of these
eigenmodes, we can immediately extract A%/ I as the relevant
time scale for the qubit decoherence time. However, this is not
the full story of the backaction: there is a prefactor, which
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strongly affects this time scale. We analytically identify a
nontrivial competition of the coherent backaction and the
cotunneling-induced stochastic backaction determining this
prefactor. Finally, introducing an exact [relative to Eq. (26)]
projection of the dynamics onto the quasistationary modes
in Sec. IITE we gain further insight, still without integrating
out the sensor. This projection incorporates the effect of the
coupling between the modes and provides the starting point
for deriving an effective equation for the isospin evolution in
Sec. IV.

1. Quasistationary and decay modes for > = 0

We first solve the kinetic equation (26) for A = 0 in which
case the dynamics of the occupation probabilities p® and p!
decouples from the dynamics of the isospins 7° and 7! as
shown by the “unperturbed” time-evolution generator Lg :=
L|—o:

—2y0 4yl 0 0
Ly = 4290yl 0 0
0 0 —2y% + @x +y!
0 0 +2y° -yl +Qx

(37

This can be brought into a diagonal form easily by noting
that the cross product operation is diagonal in the basis of the
complex unit vectors [Eq. (B30)]

e=0=9/Q, (38)

e. = (e Fie))/V2. (39)

These are constructed from a right-handed orthonormal system
(eg,e1,ey) with eg = € and an arbitrary choice of unit vectors
e; and e; in the plane perpendicular to ey,. The complex unit
vectors satisfy the orthonormality and completeness relations
(¢ =0,%)

el - €y = Ogus Zeaez- =1, 40)

where here the dot - denotes the scalar product taken with the
object to its right. Writing L in diagonal form, we find

—iLo =Y _[iQ,VIVI +(iQ, — y)ViVIT], (41)
p

with p = ¢,0,+£, and eigenfrequencies

Q=Q =0, Q==£Q, (42)
and foj and V’; are the left and right eigenvectors, respectively,
using dyadic notation. The indices p = ¢,0,+ and k = ¢q,d
label in total eight different modes. Before we discuss the
physical meaning of these modes, we first note the follow-
ing general property: since L, is diagonalizable (although
Lg # L), all the left and right eigenvectors are mutually
biorthonormal,

gkt k' _ skK'

V) -V, =878 (43)

pp's
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and they satisfy the completeness relation
k <7k
oY vEvEL =1 (44)
k=q.d p=c,0,+

This also follows explicitly by using Eq. (40) and the
expressions below. This can be exploited to expand the state
vector p(t), defined by Eq. (13), as follows:

p=p"+pHVE+ Y (o) + )i
+(phr” = pap")VE+ Y (phtd — plTa) Ve (49)
p
=VIi+) %0V
+e VOV + ) )V, (46)

where 7)) = el - T [see Egs. (38) and (39)] and the coefficients
are given by

vE(0) = VEI - p(0), (47)

taking the initial time 7y = 0 here. Importantly, equality (45)
is generally valid for any state p(¢), while the second equality
(46) holds only if p(1) = e =L p(0).

We now discuss the explicit form of the modes. The most
fundamental one is the stationary charge mode with the
conjugated left eigenvector and the right eigenvector

1 p%’t
Vi = (1) Cove= |5 (48)
0 0

expressed in the occupation probabilities of the SQD in the
stationary limit and for zero coupling A = 0,

1 0
o_Y 12y
Pa="00 Pa= (49)
introducing the often recurring rate combination
y =2y + L. (50)

The right zero eigenvector corresponds to a physical state, a
valid density operator, which is factorizable, pf = Ps, st @ %ﬂ
In this state, the SQD is stationary, pg, ¢ = Zn p;’tﬁ”, and the
qubit is in the completely mixed state with zero Bloch vector
(z° = ! = 0, see Fig. 4, upper left). Any valid solution of the
X = 0 kinetic equation p(t) = —iLyp(¢) always involves this
stationary charge mode superposed with other modes. These
additional modes contain the isospin precession as we explain
in the next paragraph. As one can see from expansion (45),
the coefficient v{ (t) = 1 for all t and irrespective of the initial
condition because the corresponding left zero eigenvector is
just the trace operation, guaranteeing that p(¢) has unit trace
for all times ¢:

w(p) =) p" = Vil p() = 1. (51)

The remaining seven “modes” have zero trace [see Eq. (43)
with k = ¢, p = c] and therefore cannot represent proper
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FIG. 4. Sketch of the complex eigenvalues and the associated
dynamics of the joint qubit plus sensor QD system without readout
(X = 0). The four upper sketches depict the evolution of the total
isospin 7 = 7%+ 7! described by the coefficients of the four
quasistationary modes in the expansion of p [see Eq. (45)]. Moreover,
the lower four sketches depict the evolution of the weighted difference
8y = plt® — p%t! of the charge-specific isospins associated with
the coefficients of the decaying isospin modes [see Eq. (45)]. The
indices & = +1,0, — 1 label the three different polarizations for the
precessional motion. The unit vector ey = Q is the “bare” qubit field
and the vectors e; and e, can be chosen arbitrarily in the transverse
plane. The two sketches on the right show the different dynamics
of the occupation probabilities p® and p' for the stationary and the
decaying charge mode, respectively. Note that p® and p' are not the
coefficients in Eq. (45) but only their combinations p° + p' = 1 and
8¢ = pip® — pdp'. If the readout is included (A # 0), the modes
become coupled. Since L # L', the transitions between the modes
are not always possible in both directions as indicated by the arrows.

density operators on their own. These modes cannot be excited
alone: they always appear in combination with the stationary
charge mode. In this respect, these modes differ from modes
encountered in, e.g., pure-state unitary evolution problems.

There are three more quasistationary modes (k = q), for
which the SQD remains in the stationary state pg g but the
qubit state is not completely mixed, i.e., the isospin T is
polarized (see upper right of Fig. 4). The related conjugated
left and right eigenvectors, respectively, read

0 0

. 0 0

q _ q _

Vi=le | Vi, (52)
e, pley

The expansion (45) shows that the coefficients of these
quasistationary isospin modes are connected with the total
isospin T = ¥ + t!. If the mode @ = 0 is excited, the total
isospin T points along the qubit axis ey and does not precess.
If the other two modes o = +(—) are excited, the total isospin
T precesses (counter)clockwise in the plane perpendicular to
eo with frequency 2. Thus, if the isospin was nonzero initially,
expansion (45) involves at least one of these three modes
in addition to the quasistationary charge mode. In the case
A = 0, the former are not damped and the magnitude of the
total isospin remains unchanged, reproducing exactly the free
unitary evolution of the qubit.
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In addition to these four (quasi)stationary modes, there are
four more decay modes (k = d) that are exponentially damped
in time. As Fig. 4 illustrates, the eigenvalues of these modes are
well-separated from the quasistationary modes in the complex
plane since Q2 < y ~ I' as seen by inserting Eq. (27) into
Eq. (50) and noting I'/ T < 1. The conjugated left and right
eigenvector of the charge decay mode read, respectively:

+pg +1

- —p0 —

vi= 7] vi= 01 (53)
0 0

If only this mode is excited in addition to the fundamental
stationary charge mode, the SQD state deviates from the
stationary state, i.e., the coefficient 8 := p! p® — p%p! # 0in
Eq. (45), while the qubit remains in the completely mixed state
(t° = 7! = 0). Clearly, such deviations from the stationary
SQD state decay on the short time scale 1/y set by the
SQD tunneling dynamics (see Fig. 4). Finally, there are three
decaying modes with conjugated left and right eigenvectors,
respectively, (¢ = 0,%£) in which the isospins are polarized:

0 0
3 0 0
d_ d_
Vo=l iple | Vo= | e >4
—Pies —€

The coefficients of these modes characterize the decay of the
weighted difference 84 = plt® — pSz! of the charge-specific
isospins [see Eq. (45)]. The weighted difference § and the sum
7 = 1% + 7! are linearly independent and together uniquely
determine 7° and t!. Note that 8y involves the stationary
occupation probabilities in contrast to § defined by Eq. (17).
Similar to the total isospin for the quasistationary modes, the
difference 8 can point along ey = € without any precessional
motion for ¢ = 0 or it can precess (counter)clockwise in the
plane perpendicular to ey for @ = 4(—) (see lower right of
Fig. 4).

We see now that for A = 0, the total isospin T decouples
from the motion of all other degrees of freedom and partic-
ularly also from 8. In contrast to 7, the difference dg is
strongly susceptible to the tunneling dynamics of the SQD,
i.e., the switching between charge states n =0 and n = 1.
This generates the noncollinearities of 7% and 7!, which are
responsible for the qubit decoherence for nonzero capacitive
coupling [see discussion in Sec. IIC, Eq. (18)]. What is
important for the following is that that the expansion (45)
carries over to the case of nonzero coupling A # 0; even in this
case, it suffices to compute the evolution of the quasistationary
modes to obtain the evolution of the total isospin.* This
observation provides the starting point of the subsequent
discussion where we first investigate how the quasistationary

“Note that the dynamics of the quasistationary modes does not
contain information about the response of the sensor QD to the qubit
since the coefficient of the stationary charge mode V¢ trivially equals
1. To describe the sensor response, one must compute the dynamics
of 8y = plp® — pSp', see Eq. (55) (while the isospin degrees of
freedom may be projected out for that purpose).

PHYSICAL REVIEW B 93, 045418 (2016)

modes—‘‘containing” the qubit dynamics—are coupled to the
decay modes and then even explicitly eliminate the decay
modes (except for their initial state).

2. Coupling of quasistationary and decay modes

We now turn the capacitive interaction back on, A # 0,
and investigate what we can say about the evolution using
the above discussion of the eigenmodes of the Liouvillian L.
We can identify new dynamical variables that characterize
the evolution in the quasistationary and decay subspace,
respectively. Based on Eq. (45), we introduce

X7 = <pg + p1‘>, xd — (plltpz - p%pi)
T +T DT — DT
and rewrite the kinetic equation as
A9l

d(XN (R A ). 66
dr \X4 A% L3+ A )\ X4 )

This is the second main equation of our study. The A" blocks
are given and discussed below except for A%, which is not
needed here [it is given by Eq. (B34) in Appendix B]. First, the
action of the unperturbed Liouvillian on these variables reads

trivially
. 0 O
o ngq - (0 SZx)’

(55)

(57)

(58)

and Lgd = qu = 0 for the A = 0 solution. The perturbation
A has two effects. It first introduces a direct action on the
quasistationary variables:

0 0
—_ A1 —
iA = (O psltA.X>

This produces the mean-field backaction, which amounts to a
tilting of the internal qubit field €2 as anticipated in Sec. IV B:
adding A% to L}’ gives the effective qubit field

Q=9+ pli

(59)

(60)

The term A9, i.e., the term linear in A thus does not lead to
dissipative dynamics of the isospin contrary to what one might
naively expect. The isospin decoherence is at least quadratic
in A (see below). We also note that the effective qubit field Q
is modified by O(I'?/T') processes (cotunneling broadening,
level shift), which affect the stationary occupation probability
p;t [see Eq. (49)]. Moreover, if one is close to resonance,
the probability pl may be a sizable fraction of 1, which it
approaches in the Coulomb blockade regime for ¢ < g, /y.
Since we allow for A ~ €2, this implies that the correction plA
leads to a large change in the qubit frequency and the direction
of the qubit axis for a large range of parameters.

The second effect of the perturbation is due to the coupling
of the quasistationary variables to the decaying variables due
to the off-diagonal blocks A%? and A%7. As a consequence, the
decaying variables cannot be just ignored after a time ~1/y
since they are permanently excited by virtual transitions from
the quasistationary modes into the decay modes and back.
These virtual processes are responsible for the qubit relaxation
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and decoherence; the multiplet of quasistationary eigenvalues
in Eq. (41) acquires an imaginary part Q, — Q4 + iy, for
a = 0,%£, which induces a shrinking of the isospin Bloch
vector. From Eq. (56) and Fig. 4, we expect that 1/ 7,1/ T, ~
AT 1 Ad4 o A2/ T, i.e., if the couplings A% and/or A%
are small, then so will the backaction be. Before we make this
more precise [see Eq. (69)], we investigate the detailed form
of these couplings, which contains the first main result of the

paper.

3. Mitigation of cotunneling noise by coherent backaction

The transition matrix from the quasistationary modes into
the decay modes reads [see Appendix B 3]

0 (14 pd)er
dg _ st
AT = <(1 + pg)cA —rAx ) (61)
with the transition factor
1
r= papPy— K(EPSK - pSt), (62)

while the transition matrix back into quasistationary modes is

given by
0 0
A1 = (0 —kx)' (63)

We first note that A, like Lo, is non-Hermitian, A #+ A, since
the qubit-sensor evolution is nonunitary due the tunneling.
As a consequence, the two transition matrices are markedly
different: while transitions from the decay modes to qua-
sistationary modes (A9%?) do not depend on the parameters
of the SQD (level position, bias voltage, and tunneling rates
I'), transitions from the quasistationary modes (A7) exhibit
a strong dependence on the sensor QD parameters that we
discuss below. That A9¢ is entirely induced by the readout
interaction H; can be shown to be a consequence of the
probability conservation together with the conservation of
the isospin during tunneling processes. The latter is specific to
the indirect measurement setup.

With Eq. (61) in hand, we can now precisely pinpoint what
we mean by stochastic backaction: the diagonal component of
A% can be split into a first term, pplA, associated with
the stochastic backaction, and a second term, —/c(pslt/Z —
pgt)l, associated with the coherent backaction as signaled
by the factor «. The combination p2p!l appears as a simple
consequence of the charge fluctuations of the SQD, which
are characterized by (n?) — (n)?> = (1 — (n))(n) = p%pl for
a two-level system (see Sec. V A). The rates y*! determining
pY pl incorporate both the effect of the SET tunneling as well
as that of next-to-leading order corrections. The stochastic
term is multiplied with A because to act back on the qubit,
the “tunneling noise” has to act together with the internal
interaction H; = /il - T/2 to evoke a A-induced transition
mediated by A%,

The most striking finding is that A% is strongly suppressed
when tuning the SQD towards Coulomb blockade. To see this,
we first note that Eq. (61) incorporates the isospin-to-charge
conversion rates (34), ¢ ~ >_, ;—;(— £, which depend on
the derivative of the Fermi function. These rates are thus
exponentially suppressed in the Coulomb blockade regime.
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We next inspect the diagonal element of A%, It is useful to
first consider the expansion of the transition factor r to zeroth

orderinI'/T:
- oL (64)
TTartyrop T)

with T*:=3 T, f* and 2I' + T~ >T:=) T,. The
terms in Eq. (64) derive only from the stochastic part p% pl in
Eq. (62). Thus, in the single-electron tunneling approximation,
the factor r is exponentially suppressed with gate voltage
since either pY or pl becomes exponentially small when
going off-resonance. One would expect that this exponential
dependence is removed by including cotunneling corrections
and the coherent backaction, which scale algebraically with
& — u, and start to dominate over the single-electron tunneling
rates as one moves into the Coulomb blockade regime. In our
calculation, we include these terms as well, but still obtain
an exponential suppression of the transition factors. Indeed,
expanding Eq. (62) to the next order in '/ T', we find

_ 1 +1r- Zr F”d)}/"
r= —(2F+ TP [ZF r <1 + = )

ORI C 0 [ B % 2
+(OT =20+ T = 140 ,

with IV =dTt(e)/de =Y, T,(fF)/T. Clearly, T't, I'",
and T are determined by the Fermi functions and their
derivatives. Thus transitions from the quasistationary modes
into the decay modes become exponentially small when
tuning the SQD into the Coulomb blockade regime. What this
implies is that any deviation from the exponential suppression
must be due to even higher order tunneling contributions
(i.e., beyond cotunneling) and thus must be a higher power
law ~1/(e — ;)" with n > 2. The experimentally important
conclusion that we can draw from this is that the sensor can be
switched off better with the gate voltage than naively expected
[see Eq. (27)].

What has happened in Eq. (65) is that the coherent
backaction « ~ Y I',¢./T o< 1/(¢ — ), which depends
algebraically on e, has completely canceled out the alge-
braically scaling cotunneling corrections to the stochastic
backaction in the first term of Eq. (62). Hence, in Eq. (61),
the coherent backaction term (I"'A/T') counteracts the change
in the stochastic backaction term due to a change in the sensor
QD rates by the cotunneling (/" x I'’>/T ~ T'A/T). This
can be seen by explicitly comparing Eq. (64) to Eq. (65)
and is clearly visible in Fig. 3. We emphasize that for this
cancellation also non-Markovian effects induced by the elec-
trodes are important, which modify the coherent backaction
(see Sec. II1 B 4). Without these, the transition factor r exhibits
a different dependence on the level position ¢ that can lead to
a violation of positivity of the qubit-SQD density operator as
we discuss further in Appendix A. Moreover, the cancellation
does not imply that the backaction is precisely the same as
when only accounting for the lowest-order I approximation
(see Fig. 3); the renormalization of the level position and
non-Markovian contributions, both scaling exponentially, still
modify the backaction.
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By formulating the problem in Eq. (56) in terms of the
A = 0 eigenmodes one most clearly sees how the cotunneling
and coherent backaction, formally terms of different order,
conspire to effectively cancel out. Note also that the dissipative
backaction (through c) appears on its own. This highlights the
importance of keeping track of all three types of backaction
that are revealed only affer integrating out the electrodes
coupled to the sensor QD to obtain our central Eq. (26). It
should be noted that the dissipative backaction couples the
quasistationary modes to the decay modes and therefore is
not relevant for the leading-order A%/ " dephasing times as
Appendix B 3 b shows; see also the discussions after Eq. (34)
and after Eq. (111) below. Rather, the dissipative backaction
must be kept to be able to calculate the response of the
dissipative sensor current of which it represents the flip side,
as explained in the introduction. As emphasized in Sec. III B 3,
we were careful throughout our analysis to include all terms
which depend on the function ¢, with algebraic tails that could
possibly cancel out. In Appendix B 4, we further discuss the
cancellation in view of our weak-measurement, weak-coupling
assumption (see also Sec. II B).

An important conclusion, which we draw in Sec. V, is that
this cancellation of cotunneling noise and coherent backaction
cannot be understood within simple classical fluctuator model.
Although this approach could, in principle, be extended to
account for the cotunneling-induced noise by modifying the
switching rates, it seems not possible to include the coherent
backaction. Moreover, other approaches that aim at directly
calculating the qubit Bloch vector T must make an assumption
about the qubit environment, in particular the sensor QD. Here
one is liable to miss the above cancellation as we also discuss
in Sec. VB 2.

It is furthermore interesting to observe that this cancellation
appears even though the coherent-backaction induced torque
terms in the kinetic equations (26) scale with A, while the
cotunneling corrections do not. However, to affect the qubit,
the “cotunneling noise” has to act together with the internal
interaction H; ~ il - T to evoke a A-induced transition me-
diated by A%¢. This is why they both affect the measurement
backaction to first order in A. Note also that the transition factor
r is not only independent of the SQD-qubit interaction A (it
appears as a factor in A7) but also of the internal qubit field
Q2. This means that the relative importance of the coherent
backaction over the stochastic backaction cannot be altered by
measuring weaker or stronger (i.e., by changing 1); in the weak
measurement limit, these effects physically come together and
should be calculated together.’ Other experimental parameters
alter this competition and their effect is studied in the next
section.

In short, the delicate interplay of the qubit plus sensor
renormalization «I" and sensor cotunneling rates ocI'? in
indirect capacitive detection may be rationalized as follows.
By keeping track of the sensor-quit coherences (since both

>The coherent backaction does not only affect the transitions into
the decaying subspace but also affects the evolution in the decay
space by modifying A in Eq. (56). However, these terms yields
only a small correction as compared to the large free evolution term
LG~ y.
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are quantum systems), we find that coherent effects counteract
decoherence, which is not really that unexpected. This may in
fact present a key difference of a sensor with quantized levels
from a single-electron transistor with a continuous spectrum. A
comparison of both types of detectors regarding the importance
of renormalization effects is therefore an interesting future
task. Finally, we emphasize that for the above cancellation the
modeling of the qubit as a charge qubit is not relevant as long
as the isospin couples to the charge of the SQD.

D. Experimental control over backaction strength

Since Eq. (65) is a key result of this paper, characterizing—
together with c—the strength of the backaction [beyond
the mean-field effect in Eq. (60)], we now investigate its
dependence on experimental parameters in some detail.

1. Gate-voltage dependence of transition factor r

InFig. 5(a), we plot the dependence of the transition factor r
on gate voltage. The figure shows two curves, one including the
coherent backaction (blue, ¥ # 0) and the other excluding the
coherent backaction (green, k = 0). Clearly, the factor r is the
largest in the sequential tunneling regime of the SQD (|V,| <
V/2). Here, transitions from the quasistationary modes into
the decay modes are induced by the fast succession of tunneling
electrons, which impose a strong noise on the qubit. The
coherent backaction and cotunneling are negligible in this
regime. This drastically changes when tuning the SQD into the
Coulomb blockade regime (|V,| 2 V,/2). The full transition
factor r is actually exponentially suppressed with gate voltage
[linear on the scale of Fig. 5(a)]. By contrast, the gate-voltage
dependence is markedly nonexponential when neglecting
the coherent backaction, characteristic of cotunneling noise,
see also the discussion of Eq. (65).

Experimentally, we expect the cancellation to be reflected
in the voltage dependencies of the qubit relaxation and
dephasing rates provided the sensor can be made the dominant
environment (which should be the case for a good qubit, for
which noise from manipulation “channels” can be switched
off). Measuring the qubit decoherence rates could clearly
distinguish between an algebraic and exponential dependence
in an experiment. Here, we expect the measurement-induced
decay rates to scale exponentially into the Coulomb blockade
regime until higher-order tunneling processes at least of order
I'3/T? become relevant. They can lead to a crossover to
an algebraic scaling 1/|e — w,|" with n > 1 deep in the
Coulomb blockade regime, see Appendix B4. In any case,
our numerical examples illustrate that a QD detector can be
switched off more efficiently with a gate voltage than naively
expected.

2. Bias-voltage dependence of r

We continue with the discussion of the bias dependence
of the transition factor », which we show in Fig. 5(b). For
small bias voltages, the SQD is Coulomb-blockaded and
the coherent backaction strongly suppresses r. When the
bias is increased, sequential tunneling sets in and when the
level position ¢ ~ V,,/2 is resonant with the electrochemical
potential of the drain, the transition factor saturates. Here, the
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FIG. 5. Voltage dependence of the transition factor r, Eq. (62),
which determines the measurement-induced backaction of the sensor
QD on the qubit (e.g., decoherence rates). We include the coherent
backaction in the blue curves (¢ # 0), while we exclude it by hand for
the green curves (k = 0). We show the dependence of r in (a) on gate
voltage V, for bias voltage V;, = 2.5T and in (b) on bias voltage V,
for gate voltage V, = 5T. Inall plots weuse I'; = I’y = I = 0.02T
and bandwidth W = 10007 . The inset in (b) shows the difference of
the two curves for k = 0 and x # 0 and illustrates that the coherent
backaction can also enhance the backaction for larger bias voltages.
Note that r is independent of A and 2 [choosing, e.g., A ~ Q ~ 0.1T
would be a parameter combination consistent with the conditions for
the kinetic equations (26) to be valid: /T « A/T" « 1].

correction due to the coherent backaction actually becomes
positive, as shown in the inset in Fig. 5(b). Yet, one should
note that in the sequential tunneling regime the coherent
backaction has only a small impact. For even larger bias
voltages, the correction from the coherent backaction drops
to zero. This is in accordance with the general finding that
renormalization effects can be neglected in the large-bias limit
[31,32] because k = > T, ¢./T ~ > T,/(e — u,) x 1/V,
is suppressed [see Eq. (33)].

3. Tunnel coupling dependence of transition factor
transition factor r

We finally discuss the impact of the coherent backaction
when changing the tunnel couplings and their asymmetries.
Since the coherent backaction is linear in x ~I'/T [see
Eq. (35)], increasing the average tunnel coupling I' = (I'y +
I';)/2 and lowering the temperature both increase renormaliza-
tion effects in a trivial way (within the limit I'/7T < A/ T’ K
1). By contrast, the asymmetry of the tunneling rates in the
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FIG. 6. Relative change K in the transition factor r, Eq. (62),
by the coherent backaction as a function of (a) the gate voltage V,
for V,, = 2.5T and (b) of the bias voltage V), for V, = 1.5T. The
different curves correspond to the indicated values of the tunneling
asymmetry g = (I'y — [',) /(I + T'y) for fixed average tunneling rate
[ = (I'y + I'y)/2 = 0.02T and bandwidth W = 1000T.

generic experimental situation, quantified by
Fs - 1—‘d
g =

==, 66
Fs + Iﬂd ( )

may have a nontrivial effect. Controlling the asymmetry has
also been suggested [13] as an experimental strategy for
optimizing sensor efficiency in the limit I';/ 'y > 1. In the
stationary limit, we previously found [32] that for I'y/ 'y < 1
the impact of the coherent backaction is strongly enhanced.

The effect of asymmetries on the transition factor r
[Eq. (62)] strongly depends on the chosen bias and gate
voltages. To illustrate this point, we plot in Fig. 6(a) the relative
change in r,

K — rK:O_rkyﬁ()’ (67)

Tie£0
due to the coherent backaction as a function of gate voltage V,
for the different values of g as indicated. When introducing a
nonzero junction asymmetry g # 0, the exponential suppres-
sion with gate voltage effected by the coherent backaction,
found in Fig. 5(a), is simply rigidly shifted horizontally without
changing its shape considerably. This can be understood
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from the fact that the maximum of r as a function of
V, is shifted by an asymmetry g due to a basic effect
of Coulomb interaction.® In the vicinity of this maximum,
leading-order processes dominate and cotunneling and the
coherent backaction effects can be ignored. One then finds
the rule that for large asymmetries (|g| > 1), the SQD level
position &€ = —V, effectively lies closer to resonance with
the electrochemical potential of the more strongly coupled
electrode. Now, for positive bias Vj, as in Fig. 6(a), the
electrochemical potential u; = +V;,/2 (ug = —V,/2) of the
source (drain) is resonant with the QD level for negative
(positive) values of V,. Thus, when the coupling to the source is
larger (smaller) than that to the drain, the maximal transition
factor r is achieved for negative (positive) V, as Fig. 6(a)
demonstrates.

By contrast, Fig. 6(b) shows that the impact of the asymme-
try g on K as function of the bias voltage is more complicated
close to resonance. In general, K decreases with Vj, as
Fig. 5(b) already showed for g = 0. In the limit V, — oo,
one expects k ~ 1/V, — 0 and therefore K — 0. Moreover,
we find K > 0 for small bias [generally valid] and for large
bias [specific to the parameters chosen in Fig. 6(b)]. Thus both
for large and small bias, the coherent backaction suppresses
the measurement backaction. However, for intermediate bias
voltages, K shows strong drops as Fig. 6(b) illustrates. This
suppression appears since « and (p., /2 — p) change their sign
in the vicinity to resonance at ¢ = u, and therefore become
both very small. This suppresses K and for a small intermediate
bias regime K can become negative as pointed out already in
Sec. I D 2. Figure 6(b) reveals that the position and even the
existence of these drops and sign changes depends crucially on
the asymmetry g and the gate and bias voltage polarity. In par-
ticular, for V, > 0, as assumed in Fig. 6(b), the source cannot
become resonant with the level for positive bias. Accordingly,
the drop is absent for g = 0.5 in Fig. 6(b), i.e., when the source
is coupled more strongly to the SQD than the drain.

In summary, the coherent backaction starts to cancel the
cotunneling-induced stochastic backaction on the flanks of
the SQD resonances where one enters Coulomb blockade—the
optimal spot for sensing—with corrections depending on
the junction asymmetry, see Fig. 6. Junction asymmetries
commonly found in experiments strongly affect the relative
importance of coherent backaction terms and thus also the
qubit decay rates.

E. Effective evolution of quasistationary modes

Since the qubit isospin is contained in the quasistationary
degrees of freedom [see Eq. (55)], it is of interest to find a
description only for their evolution. Importantly, we do this
without making further approximations, i.e., we reproduce

°It is known that at finite temperature the condition for a resonance
is not € = u,, but there is an offset linear in T with a coefficient
that grows with junction asymmetry. This is related to Coulomb
interaction effects on the QD and appears already in O(I") [95]. This
causes the maximum of the decoherence rates to lie at nonzero V, (see
Fig. 5) and also causes the shift with changing junction asymmetry g
in Fig. 6.
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exactly the result for X9(¢) as one does when solving Eq. (26)
for p. For all practical purposes, one should solve the latter
equation [or equivalently Eq. (56)]: Egs. (71) and (72) below
merely serve to highlight some properties of this solution, in
particular, its non-Markovian nature and the impracticability
for really getting rid of the sensor dynamics. It also serves as
a basis for Sec. IV.

Equation (56) is a coupled set of differential equations
for X9(r) and X“(r). The equations can be solved most
conveniently by Laplace transformation, defined by
f(2) = ;7 dte' f(t) for any (well-behaved) time-dependent
function f(¢). This yields

X(z) =

Xr(2), (68)

i
z—L¥(z)

with a Laplace-frequency dependent effective Liouvillian

LU(z) = L3 + A9 4 A®? A%, (69)

z— Li? — Add
and matrices given by Eqgs. (57)—(59), (61), (63), and (B34).
The frequency-dependent initial condition is given by
X4(0),

X{(2:0) = X9(0) + A~ (70)

— Lgd — Add
where we take the initial time to be t = 0. The intermediate
steps of the derivation of Egs. (68)—(70) are given in
Appendix B. There we show how to reproduce the above
result in the general framework of a projection approach
following that of Nakajima and Zwanzig [63,70-72]. The
projection approach simply separates the dynamics in the
complementary subspaces spanned by the quasistationary and
decaying modes. Importantly, this projection technique treats
all the different types of backaction we discussed so far on the
same footing, which allows us to go beyond the approaches
of Refs. [53] and [33].

Transforming the solution (68) back to time space and
exploiting the convolution theorem yields [see Appendix B]

t
X9(t) = / dr'Tidd e — )X (1), (71)
0

X9.(1) = X10)8(' — 0) + 4 HX40),  (72)

where §(¢' — 0) indicates a §-function with infinitesimal shift

and
* dz _. i
qu([) 2/ —e_’Z’—, (73)
eff . 27 7 — szqf(z)
*® dz _,
(e =f e (74
et (1) oo 2T z— L34 — Add {74

Equations (71) and (72) are the third set of main equations.
We stress that they are generally valid in the sense that they
do not involve any approximations beyond those needed for
the validity of the kinetic equations (26): Eq. (71) exactly
reproduces X9(¢) as obtained from the solution of Eq. (56). The
expression for X9(¢) simplifies drastically for times ¢ > 1/y if
one accounts only for the leading-order contributions in A /y.
Such an expansion is valid only in the weak-measurement
limit A/y and complies with our kinetic equations in the
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high-temperature limit I'/T <« A/T as we discuss further
below in Sec. IV. Before doing so, let us first note a couple of
general properties of the above solution.

Non-Markovian dynamics and time scales. The effective
Liouvillian (69) confirms the discussion in Sec. I[IIC2: the
unperturbed evolution in the quasistationary subspace is
perturbed directly by A99, which can be absorbed into a
redefinition L{? = L{? + A%9 that just leads to the mean-field
tilting of the qubit axis.

Moreover, the third term in Eq. (69) gives an explicit
expression for the indirect and in general non-Markovian
perturbation of the quasistationary evolution by virtual tran-
sitions via the decay modes. This interpretation follows most
clearly from an alternative derivation in time space given in
Appendix B 2 and illustrates that the time delay between these
transitions—giving rise to non-Markovian effects—converts
into the frequency dependence of this expression. This term
entails the effect of the stochastically fluctuating deviations
from the mean field (see Sec. Il C) and separates it from the
mean-field effect contained in A?9. Since the denominator in
this expression does not grow exponentially (it rather tends
to be constant because |L]?| ~ y), the voltage dependence
of this term is largely determined by that of A%¢, which we
discussed above.

The third term in Eq. (69) has, in general, several effects:
the eigenvalues of LI? in general acquire (i) a real part
leading to an additional shift of the qubit frequency and (ii)
an imaginary part, which corresponds to the relaxation and
dephasing rates of the qubit. To extract both effects, one has
to inverse the Laplace-transformed function (68), which leads
to an integral that should be computed by the applying the
residue theorem. The residues are determined by the zeros
of the denominator satisfying z, = L{%(z,,) and determine the
time scales of the qubit evolution. (iii) Moreover, the third term
may not commute with L¢?. This induces transitions between
the unperturbed eigenstates and leads to a rotation of the qubit
eigenbasis. (iv) Finally, since the third term is not Hermitian
due to the decoherence that it induces (in contrast to L{?), the
qubit eigenaxes may not be mutually orthogonal any more.
This renders the circular precession induced by L{? slightly
elliptical as we illustrate below in Sec. IV.

The effective Liouvillian (69) also allows for a comparison
with earlier results. We note that our approach is conceptually
quite similar to that discussed in Ref. [53]. However, Ref. [53]
employs the clearly stated additional assumption that the effect
of the electrodes is only to modify the SQD dynamics (assumed
to obey a Lindblad equation) without affecting the (effective)
coupling to the qubit. In our formulation, this would mean that
the coupling between the quasistationary and decay modes
is mediated only by the interaction H; = 7iA - T/2, i.e., only
the stochastic backaction. This means that in the approach
of Ref. [53] both the dissipative and coherent backaction
are neglected. Within this approximation one can thus not
calculate the experimentally measurable signal current; it
must be consistently set to zero. (The signal current was not
calculated nor of interest in Ref. [53]). Moreover, Ref. [53]
focuses only on the time scales and does not consider initial-
slip effects that we next turn to.

Initial slip. Equations (70) and (72) show that the decay
modes affect the quasistationary modes not only through
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the effective Liouvillian but also through the effective initial
state [43,55-58]: the latter is not just given by the initial
quasistationary variables contained in X?(0). In addition, there
is a term in (72) that accounts for a initial contribution from
the decaying subspace, X?(0), followed by a time integral
over transitions into the quasistationary subspace. This leads
to an initial slip that affects the quasistationary modes. Like
the time evolution (71), the slip (72) of the initial state has
a a time-nonlocal expression in terms of the initial state of
the decay mode X4(0) [in the Laplace transform (70) the
corresponding second slip term has frequency dependence].

An experimentally relevant question is how to eliminate or
minimize the initial slip since it can induce errors even for a
perfectly prepared initial qubit state. In Appendix C, we show
that initial qubit-SQD states p(0) that exhibit no initial slip
form a subset of measure zero in the set of all valid initial
density operators p(0); in general, a sufficient condition for
zero slip is that X4(0) =0, ie., using Eq. (55):

84(0) = pip"(0) — pgp'(0) =0, (75)
84(0) = py°(0) — pgz'(0) = 0. (76)

To find all initial states with zero slip, one has to compute
the kernel of matrix A%(z — Ld? — A9%)~1. Assuming the
frequency z does not hit a pole of the denominator (for example
when considering the Markov approximation for z = 0), the
inverse (z — L3¢ — A9?)~! exists and has full rank. Thus, to
determine the dimension of the kernel, it suffices to determine
the rank of A%9, which is 2 since

()= 3)G)=6) o

for any x,y € R and using Eq. (63). Thus the matrix A%%(z —
Ld® — A%)~! has a kernel of dimension 2, which means that
the set of initial states has zero measure since X¢ can be taken
from a four-dimensional set.

One way to eliminate the initial slip is to switch off
the capacitive interaction before t =0, i.e., A(t) =0 for
—1/y <t < 0. Then the detector can establish a stationary
state and the initial SQD-qubit state factorizes: X¢(0) = 0
[see the L = O solution (46) and see also Appendix C]. By
contrast, if one switches off the current through the sensor,
I' — 0, before t = 0, then one starts with a sensor in a definite
charge state p'(0) =0 or 1, which is highly nonstationary
for typical operation parameters of the SQD (tuned close to
resonance for high sensitivity, one finds usually pg’t ~ pb.
The backaction-induced initial slip thus leads to an essential
difference between two ways of switching off a sensor, which
should be taken into account in designing detection protocols.

The magnitude of the slip in general depends on frequencies
only forz > Lgd + A% ~ y_This means that the initial value
X?(0) influences X¢(¢) for times ¢ ~ 1/y [through the integral
(72)]. In Sec. IV C, we investigate the slip magnitude in more
detail in a high-temperature limit to leading order in A/y;
importantly, we find that even in this simple case there is a slip
effect of order 1/y which affects the overall qubit dynamics
by, e.g., phase-shifting the solution in a way depending on the
sensor initial state.
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From the above we can generally conclude within the
regime of validity of the kinetic equation (26) that due to the
backaction-induced initial slip additional errors are generated,;
since the zero-slip states are sets of measure zero, it is clear that
preparation errors of the qubit-sensor state will invariably lead
to an initial slip. Models of such possible errors are actually
relevant for a different branch of quantum information. In
quantum-error correction, one deals with decoherence from
the environment in a phenomenological way by introducing
additional bit-flip errors [73]. This requires assumptions
to be made about the type and statistics of the different
possible errors. Our work thus provides in this context a
possible scenario how such errors may arise and how they can
be modeled, after, e.g., a measurement has been performed.
This will become more concrete in the next section, where
we discuss simplified equations, which have, however, only a
limited range of applicability.

IV. HIGH-TEMPERATURE QUBIT DYNAMICS

The kinetic equation, either in representation (26) or (56),
form central results of this paper. They fully suffice to compute
the transient dynamics of the charge-specific isospins 7°(¢) and
7!(¢). From this result, the total isospin 7(¢) = %) + 7'(2),
i.e., the reduced qubit state can be constructed. However, there
are several reasons to attempt to obtain a closed description in
terms of () only.

First, from Eq. (26), it is not directly clear on which
time scales t(¢) evolves or decays. Second, an effective
qubit description plays an important role, for example, in
quantum error correction. It is an interesting question how
far Eq. (26) can actually be reduced to a closed equation for
the reduced density operator for the qubit alone. One indication
that this requires additional assumptions is that (26) and (56)
can be solved only if the full initial state vector [either in
form Eq. (13) or (55)] is specified and not just the sum
7%(0) + 7'(0). We have already seen that the initial values
of the other degrees of freedom produce an initial slip [see
Eq. (70)] and will see below that even in lowest nonvanishing
order this slip cannot be avoided. The third consideration is
related to this and concerns the minimization of backaction
in quantum-information processing; one would like to know
the effective qubit eigenmodes, e.g., to construct initial states
that are least sensitive to backaction by setting experimental
parameters.

To investigate all this further systematically, an effective
theory for the qubit evolution in a simple limit is useful. In this
section, we consider the regime where the coherent backaction
and O(I'/T) corrections to the stochastic backaction can
both be neglected. We stress that this is for the purpose of
illustration mostly since the latter effects are relevant under
typical experimental conditions. This simplification allows us
to perform a expansion of the effective Liouvillian (69) and
the initial slip (70) to leading order in A/y and we investigate
the resulting transient qubit evolution here in some detail.
In Sec. IIID 1, we give tangible analytical expressions for
the relaxation and dephasing rates as well as for the qubit
precession frequency. In Sec. IV B, we assess the accuracy
of the approximate theory by comparing with the numerical
solution of the full kinetic equation (26). We further discuss
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the slip of the initial condition of the qubit isospin in Sec. IV C
which relates to a “kick” that the qubit experiences during the
relaxation time of the sensor QD. Finally, we show in Sec. IV D
that the measurement backaction forces the isospin to precess
about a tilted axis in an elliptical way. The eccentricity is
connected to oscillations in the decay of the purity of the
qubit state. This illustrates concretely that our density-operator
approach goes beyond standard master-equation approaches as
we discuss in Sec. V.

A. Effective Liouvillian, initial slip, and mode vectors

The kinetic equation [Eq. (26) or (56)] was derived using the
weak-coupling, weak-measurement limit, ['/T < A/T « 1
where A ~ A,Q. This prevents one from just expanding in
A/ T since that would imply taking A/ I" <« I'/T. However, if
we consistently neglect the corrections I'/ T (the cotunneling
corrections to the stochastic backaction as well as dissipative
and coherent backaction), then we can take A/I" — 0 and
expand in this parameter. We refer to this as the high-
temperature limit (since it is the large temperature that allows
one to take the infinitely weak-measurement limit). It should
be noted that in this approximation the current through the
sensor QD is zero, i.e., at this level of the theory, one
is not accounting for the actual backaction effects due to
the current measurement (rates ~I'A/T), but only for the
leading effect of the tunnel coupling. Below, the stationary
occupations p®! = y1:0/y are given by their leading order
expressions (SET rates) yOl = Zr:s,d F,frjE [see Eq. (27)]
and y =2y° 4yl

We thus simplify the isospin evolution obtained from the
effective Liouvillian (69) and for concreteness assume from
hereon

Q = Qe,, (78)

perpendicular to the capacitive interaction vector A = Ae;.
This means that if we ignored the mean-field tilting 2 —
Q (which we do not), the qubit would oscillate in the
measurement basis.

As we explain in detail in Appendix B, the isospin evolution
contained in Egs. (69) and (70) can be simplified by performing
aMarkov approximation, i.e., by replacing z = 0. This Markov
approximation with respect to memory induced by the sensor
QD (after integrating out the electrodes) is valid in the
weak-measurement limit A/ " < 1 (see Appendix B 3 ¢). We
note that in the high-temperature limit also non-Markovian
corrections due to tunneling processes (I") are consistently
neglected as next-to leading order I'?/ T corrections are not
accounted for. With z = 0, the Laplace-transform inverse of
Eq. (68) can be easily performed. Expanding the denominator
in powers of A/ I" and extracting the isospin from X7, we find

(1) = e Ll 74(0) + O(A?/y?). (79)

In this approximation, the stationary state T(co) = 0. The
effective Liouvillian in Eq. (79) reads in diagonal form

. g ot
—iLefr = E (2 — ‘}/Dt)eeff,oleeff,av
a=0,%+

(80)

where the eigenvalues, the left and right eigenvectors, and
the effective initial state tT.(0) are specified below by
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Egs. (81)—(93). Equation (79) is valid for times 1/y <t <
y2/A3 as Appendix B shows and also our numerical checks
below confirm. The lower limit indicates that we consider the
wide-band limit” with respect to the sensor QD bandwidth y
(by setting y > z — i0 above), whereas for times > y /A2,
corrections of O(A3/y?) to the effective Liouvillian (80)
accumulate and the error made for () may become sizable.

1. Initial slip

The effective initial condition appearing in Eq. (79) reads
(see Appendix B)

1
Teii(0) = 7(0) — ;x x (pat°0) — pST'(©). 81

This shows that even in this simple limit the qubit description is
still not closed. Although the entire sensor variables (electrodes
plus sensor QD) have been eliminated, the initial condition
does not depend only on 7(0) (see Appendix C). Instead, it
additionally requires the specification of the component of
the initial qubit-sensor state p(0) in the decaying subspace.
Thus both initial charge-specific isospins 7”(0) are needed
to compute 7(¢). In contrast to the general case discussed in
Sec. 1T E, Eq. (81) only relies on §4(0) = p!°(0) — pSz'(0)
and does not involve 84(0) = pl p°(0) — p&p'(0). The reason
is that the denominator in Eq. (74) is approximated here by
—y and A%“ does not act on the charge sector [see Eq. (63)].

As mentioned in the general discussion of the initial slip,
Eq. (72), initial qubit-sensor states p(0) with zero initial slip
form a zero-measure subset of all possible initial states. As a
result, the initial slip adds to preparation errors, an error that
depends on the sensor dynamical state. In the present simple
limit, the initial slip is a time-local expression, Eq. (81), in
contrast to the general case, Eq. (72). If the measurement is
not weak any more, i.e., if A ~ y, one can expect the dynamics
of the charge-specific isospins to become important on the
entire time scale of the qubit decay and not just through an
effective slip of the initial condition. Still, even in the weak-
measurement limit studied here, Eq. (81) shows explicitly that
the slip is of non-negligible order A /y .

2. Qubit time scales

The simple formulas (79)—(81) for the relevant precession,
relaxation, and dephasing time scales form the third central set
of equations of the paper. We now discuss their contents. The
eigenvalues in Eq. (80) contain the effective qubit frequencies

Q, =0, =0+, (82)

which up to O(A3/y?) read

Q=19 = /2 + (pla)’. (83)

Equation (83) is precisely the length of the mean isospin field
announced earlier in Eq. (21), but now with (n) = Pslp

=2+ pir = Qe (84)

"The kinetic equations for sensor QD plus qubit are considered
here in the wide-band limit with respect to the bandwidth W of the
electrodes to which the sensor is coupled.
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whose unit direction vector is relevant for the following:

e = (QR+ pird) /<. (85)
Moreover, we will need the perpendicular unit vector,

el = (Qh — plaf)/Q, (86)

lying in the plane spanned by £ and A. Our calculation thus
confirms the intuitive picture explained in Sec. II C; the mean-
field effect of the average SQD charge (A) = p/, is just to tilt
the qubit axis (see also below in Sec. IVB 1) and does not
rely on the tunneling-induced fluctuations ~éii, see Eq. (20).
Tunneling influences the mean sensor charge only indirectly
as noted in the discussion of Eq. (21).

Compared to the first term of Eq. (41), the eigenvalues
of the quasistationary modes have acquired small dissipative
parts [see Eq. (80)]:

1 1

= —, = —. 87
Yo T Y+ T (87)

Here the relaxation rate is given up to O(A*/y?3) by

1 A-e))? Q\? A2
—zrﬂzr(f) y (88)
T, y Q) y

which is quadratic in the component of the measurement
vector A perpendicular to the average isospin field € with
the transition factor r given up to zeroth order in I'/T by
Eq. (64). The dephasing rate 1/7; is expressed compactly in
terms of the pure dephasing rate 1/Ty = 1/1, — 1/(2T)) [27]
up to order O(A*/y?) as

1 x-e)? Apl\ a2
1_ Gea)r :r(&) L, (89)
Ty Y Q) vy

which is quadratic in the projection of A on the unit vector
e = Q@ /<2 along the average isospin field. In the following, we
refer to both relaxation and dephasing as decoherence because
both drive the qubit into a mixed state.

Note that in both decay rates, the transition factor r appears,
which links to the discussion of the previous sections. If
higher-order A/y terms are included into the relaxation
and dephasing rate, additional terms appear that depend
on the dissipative backaction terms ~c stemming from the
off-diagonal elements in Eq. (63).

It is easy to see that the relaxation and pure dephasing time
Ty and Ty are positive,® since the transition factor is given to
lowest order by r &~ 2I", I'_ /(2" + I'_)?> > 0 [see Eq. (64)].
Since Ty > 0, the ratio 7, /2T further satisfies the relation [27]

T, 1

s =——">5 < L (90)

2T 142(pir/ )
Equations (88) and (89) again confirm our intuitive expectation
from Sec. II C that only the fluctuating part of the SQD charge
~Adn (involving here virtual transitions into the decay modes)
is responsible for the qubit decoherence. The energy scale A2/y
for the decoherence rates exhibits the expected quadratic scal-
ing with the weak coupling A and inverse scaling with the large

8The transition factor satisfies » > 0 even when cotunneling and
coherent backaction terms are included, see Eq. (65).
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detector band width y, as discussed further below in Sec. V A.
The decay time is thus slow compared to the time scale of
the relaxation ~1/y of the sensor QD and that of the intrinsic
evolution of the SQD-qubit system ~1/A. We emphasize that
this picture and our approach hold only in the limit A < I":
it breaks down if the tunneling becomes to strong relative to
either the measurement A or the qubit internal field €2.°

One should note that the corrections to the decoherence
rates y, [see Eqgs. (88) and (89)] are of O(A*/y?), while
the corrections to the qubit frequency (82) already appear in
lower O(A3/y?). The reason is that these quantities behave
differently under a simultaneous reversal of the orientation of
A and € as one can see from a simple physical argument:
mapping A — —A and £ — — corresponds to spatially
mirroring the detection setup about the vertical axis in
Fig. 1. This clearly inverts the sense of the precessional
motion, i.e., one has Q,(—A, — ) = —Q, (A, ) but the qubit
decay cannot depend on mirroring the setup, i.e., we have
Ya(—A, — £) = y,(A,R2). This implies that corrections to y,
must be of even order in A and therefore at least of fourth
order in A, in agreement with our calculation.

3. Mode vectors

To complete the specification of the effective Liouvillian
(80), we give the explicit formulas for the unit vectors
€. - Expressed in e; and e given by Egs. (85) and (86),
respectively, they read

A2 Qapl

Caro o) +1 Qf“e,, x ey, 1)

22 Q Q- Q)2

€eff .1 o<eL+ry—Q§We” X e, 92)
€eff 2 X € X €
n 2Q | Q- Q>+ QQ/2
rV—Q§<Aps[e + I el>, 93)

where o indicates that we suppress the normalization con-
stants. As before [see Eqs. (38) and (39)], we define e, 4 =
(€efr 1 F ieeff’z)/\/z and we note that ej x e; = Q@ xi [see
Egs. (85) and (86)].

In stark contrast to the unperturbed case, the real unit vectors
€eff 0, €efr,1, and eesr o form a real non orthogonal basis. This
implies that to decompose a vector in the basis {e.s o}, One
needs to take the scalar product with the dual basis denoted
{€cfr o}, see Fig. 7. The dual basis vectors €. , are nonunit
vectors orthogonal to the plane spanned by e.tr g and e,

€eff . X €eff

Coff o = 94)

l€etr o * (€efr g X €efr )|
where («,8,y) is a cyclic permutation of (0,1,2). We refer
to this nonorthogonality of the eigenvectors in the following
simply as a distortion of the isospin modes.

The distortion of the mode vectors scales with the small
ratio of the magnitude of the decoherence rates A%/y relative

to the effective qubit frequency €2 ~ A and is furthermore

“Note that the decay rates would diverge in the limit A/ T" — oco.
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€eff,0 €eff,0

€eff,1

éeff,l
Eeff 2 7. ¥
€eff,2

FIG. 7. Distortion of isospin mode vectors. (a) Three-
dimensional sketch of the effective qubit axes e, [0 =0,%,
Eqgs. (91)—(93)] and its dual basis & .. Note that e. o has a nonzero
projection on the plane spanned by ey ; and eeq >, while & ¢ is
orthogonal to this plane. Likewise, a vector in the e j-€.¢ > plane
has a nonzero component along e .

suppressed by the transition factor r when going off-resonance
[see Eq. (62)]. Since we allow for A ~ €, the remaining
factors in Egs. (91)—(93) can be of order 1. This distortion
also has tangible physical consequences: Eq. (91) shows that
the precessional motion of the qubit isospin T becomes tilted.
It is also not circular any more, but becomes slightly elliptical
instead as we investigate in more detail in Sec. IV D.

4. Other approaches

At this point, it is instructive to compare with some other
approaches. At first sight, the mode distortion may appear
peculiar and one may wonder why it does not show up in other
approaches. In fact, the mode distortion disappears in the limit
A/ 2 — 0, 1i.e., when the capacitive coupling becomes smaller
than all other energy scales. In this limit, the modes become
orthogonal with e, = €. This diminishes also the mean-field
effect. This limit is equivalent to the frequently made secular
approximation that Davies has shown to be exact in this strict
weak-coupling limit [74,75]. Here, however, we consider the
more general situation that the capacitive coupling A can be
of the same magnitude as the internal qubit energy scale €2.
The secular approximation is not applicable in this case as we
showed previously [32] in accordance with other works [61].
This is furthermore signalled by the observation that the secular
approximation conflicts with the isospin conservation when
electrons tunnel between the electrodes and the sensor QD.
The strength of the mode distortion thus reflects the importance
of nonsecular corrections (coherences).

We next compare to Ref. [33], whose approach is similar
to ours.'? This study applies a two-step procedure to derive
a closed, effective description of the qubit dynamics, starting
from a generalized master equation for qubit plus SQD, as we
do. To treat the limit Q > A?/y, itis additionally assumed that
A -e; | < |\ - el ie., perpendicular fluctuations of B along
e, are small as compared to longitudinal fluctuations along the
mean field Q. Perpendicular fluctuations are therefore treated

10We stress that Ref. [33] is based on a kinetic equation to leading
order in I', i.e., cotunneling and renormalization effects are excluded
from the start. Thus the authors do not address the same questions as
we do here.
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there perturbatively. In this way coherences between isospin
states quantized along e are only effectively included. By
contrast, we allow for comparable fluctuations in the direction
of both e and e, which is a more general case.

B. Accuracy of effective isospin dynamics

Before we illustrate the effects of the initial slip and
the mode-vector distortion, we discuss the accuracy of our
Liouville-space perturbation theory as compared to the full
solution of the kinetic equations (26) in the high-temperature
limit and up to times times ¢t ~ /A2 > 1/y.

1. Undistorted, mean-field qubit modes

As a starting point for this discussion, we first discuss our
result in view of the rough mean-field picture of the detector
backaction. It is valid in zeroth order in A and 2 relative to I,
where we neglect all relaxation and decoherence rates A2/y <
A. Expanding the expressions (91)—(93) for the mode vectors
to the corresponding zeroth order yields an orthonormal basis,

Ceff 0 €|, €y ] €, and e e x e, (95)

with e and e givenby (85) and (86), respectively. Thus, in this
approximation, the dual basis {€cf o} coincides with {e.s o}
In analogy to the unperturbed case discussed in Sec. IIIC 1,
the isospin just precesses circularly about e; however, the
precession frequency—<2 instead of Q—and the precession
axis—along e = 2/ instead of 2—are different. This rough
mean-field picture of the measurement is therefore to tilt the
“bare” isospin field to the mean isospin field (84) by an angle
[see Eq. (21)]:

tanf = 96)

Pk

g
In our concrete charge-qubit model, this means that the
capacitive readout simply detunes the charge qubit due the
gating effect of the sensor QD with mean charge p). Here
the mean charge is identified with the ensemble averaged
charge, see the related discussion in Sec. II C. Since we only
require A < y but impose no constraint on the ratio A/ €2,
this angle can be large. In Fig. 8, we illustrate this effect by
showing the evolution of the three isospin components in the
basis (e,,e,.e;) = (Q,X X Q,X) on a long time scale > 1/y
when the isospin initially points into the direction of €, i.e.,
perpendicular to A. If the coupling A was switched off, we
would expect the isospin not to precess at all and to remain
stable along . By contrast, the oscillations of all components
in Fig. 8 clearly demonstrates that the isospin revolves about a
very different axis, roughly pointing in the direction of £ + A
in line with Eq. (96) for the parameters employed here.

2. Accuracy of weak-measurement expansion

The green curves in Fig. 8 depict the difference between
the isospin evolution obtained by solving the kinetic equations
(26) and the evolution computed from Eq. (79) based on our
perturbation theory, indicating that both agree well (plotted
is the error multiplied by 100). The remaining deviation
is mostly due to a small phase shift between the full and
perturbative solution that accumulates in time. The origin lies
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FIG. 8. Time evolution of the isospin vector components (a) t,,
(b) 7, and (c) T, for times ¢ > 1/y. The blue curves show the analytic
solution 7™ given by Eq. (79), whereas the green curves show 100
times the error with the T obtained from the solution of the full kinetic
equations (26). The coordinate system is chosen as (e,,e,,e;) =
(€% x ©.%). The initial state of sensor plus qubit is p°0) =0,
7°0) = 0, p'(0) = 1, and 7'(0) = . The remaining parameters are
[=T;,=T=1073T,A=Q=0.1 = 10T, V, = V, = 2.5T,
and W = 10007 . For these parameters, we find y ~ 3.75 x 1073T
and Q ~ 1.37 x 107*T and therefore 1/y ~ (2m/Q)/200 < t K
y2/ A3 ~ 30027 /S2) is well fulfilled for the times shown above.

in ignored corrections of order of ~A3/y? to the effective
qubit frequency (82). In Fig. 8, this accumulates after the
shown time At ~ 25 x (27/) to a phase difference Agp <
25 x (L/4T)* ~ 0.01, which is just visible. However, we
emphasize that the accuracy of the decay rates is higher
as discussed below Eq. (62) and therefore the exponentially
decaying envelope of the isospin evolution agrees with much
larger accuracy up to longer times.

The rough mean-field picture introduced above complies
with the physical picture developed in prior works [26-28,33].
It also forms the basis of a simple classical understanding
of the qubit decoherence in fluctuator models, to which we
compare our results in Sec. V A. However, there are important
corrections to this picture even in the high-temperature limit,
which we next discuss.

C. Effect of initial slip

A first illustration of the corrections to the mean-field
picture is the effect of the slippage of the initial condition,
Eq. (81). To illustrate this effect, we compare in Fig. 9 the
solution for the isospin for two different initial states. We
start from a factorizable initial state pps = pp ® ps with a
fixed total isospin 7(0) = Q@ along the “bare” internal field
[determining pp = (ﬂQ + 7(0) - 7)/2], while changing the
initial condition for the SQD through the sensor charge equal
to p'(0) [determining ps = (1 — p'(0))P° + p'(0)P']. We
show the outcome for 7j™ for the two cases of an initially
empty SQD (p'(0) =0) and a SQD hosting an electron
(p'(0) = 1). Figure 9(a) exhibits a phase shift between the
two isospin evolutions that persists over an entire qubit cycle
(and in fact for all future times, which are not shown here).
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FIG. 9. Effect of initial slip: time evolution of the isospin
component 73" computed from the analytical expression (79). (a)
Component %f“a for a full qubit cycle. We assume a factorizable
initial state of SQD plus qubit factorizes by taking t"(0) = p"(O)fl
for n = 0,1. Both solutions show a phase shift with respect to each
other that does not die out, i.e., it persists even over many qubit cycles.
In inset (b), we compare 3™ (blue) with the component 7, computed
from the full kinetic eqﬁations (26) (red). The high-temperature
approximation 72" approaches the full solution 7, on the time scale
~1/y during which the SQD approaches stationarity. The inset (c)
shows 73" after one qubit cycle for the two initial conditions and
illustrates that the offset of both curves has not changed appreciably
as compared to the evolution close to t = 0. The coordinate system
is chosen as (e,,e,,e;) = (.4 x ©,%). The parameters are 'y =
Iy=T=10°T,A=Q=0I1 =107T,V, =3T,V, =T, W =
10007, resulting in y = 2y°+ y! &~ 3.30 x 1073T [see Eq. (27)]
and € ~ 1.27 x 107*T [see Eq. (83)].

The approximate analytical solution (79) is valid over the
entire time scale shown in Fig. 9(a) except for very small
times ¢ < 1/y. In Fig. 9(b), we illustrate how the isospin
computed from the full kinetic equations (26) (red) approaches
the approximate analytical solution (79) (blue): all curves for
the full solution (red) start from the same value for 7,(0) = 0
but immediately develop differently depending on the initial
SQD charge p'(0). On a time scale ~1/y, they approach
the approximate analytical solutions r;‘“a(O) (blue), which are
offset by the initial slip (81). Figure 9(b) confirms that precisely
due to this slip the analytic solution accurately approximates
the full numerical one for times ¢ > 1/y. The latter time
scale is expected since the approximate curve relies on the
SQD wide-band limit. (The analytic solution may even be
unphysical fortimes# < 1/y;in certain cases, including Fig. 9,
one may find |t.(0)] > 1.)

If one, however, neglects the initial slip (81) one obtains a
curve similar to the blue one in Fig. 9 but with zero vertical
offset for time r = 0. This clearly leads to a nonnegligible
deviation from the full solution for initial conditions with
nonstationary sensor. After a time r ~ 1/y, the qubit phase is
advanced by 2/y, which can be of the same order as the phase
angle ~A/y of the initial slip (81) (depending on the relation
A, €2, within the restriction A,Q < I'). We stress that this slip
leads to a cumulative effect; even at long times ¢ > 1/y, the
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approximate solution without slip remains offset relative to the
full solution.

Altogether, this shows clearly that one cannot get rid of the
detector completely—even though we describe the qubit state
using only the Bloch vector 7 (#). It is difficult to eliminate the
slip by a choice of the initial state of the coupled qubit-sensor
system as mentioned (see Sec. IIIE) and further discussed
in Appendix C. Importantly, one should note that it may
not be possible to remove the initial-slip backaction by any
qubit preparation (i.e., just its reduced density operator T).
For quantum error correction, it is thus important to model the
failure of the preparation not only of the qubit dynamical state,
but also the dynamical state of the sensor QD and their mutual
correlations.

D. Distortion of isospin mode vectors

The rough mean-field picture also breaks down when
accounting for the backaction effect on the isospin modes
vectors: the eigenvectors egfr , are modified from Eq. (95) to
Egs. (91)—(93) when taking into account the finite decoherence
rate A2/y. This leads to both a tilting of the qubit axis and
elliptical isospin precession.

1. Tilting of precession axis

As a first consequence, the effective precession axis eefr o
acquires an additional tilting beyond the mean-field effect.
This manifests as a nonzero component of et o along e x
e, =  x X, which is perpendicular to both the intrinsic qubit
precession axis € and the measurement vector A and therefore
perpendicular to Q. By virtue of Eq. (91) this rotates the qubit
axis relative to e by an angle

X~ rk—igﬁpsl‘
yQ Q2

o7

plus higher-order corrections. This tilt becomes noticeable
close to resonance, where detection is performed, as we
illustrate in Fig. 10(a), where we plot the projection of 7 (¢) onto
the mean-field axis e = /. In addition to an exponential
decay with the relaxation rate 1/ 7}, this component acquires
an additional oscillatory component for a general initial state.
This simply indicates that we are looking at the component
along a vector that is not the zero eigenmode of the qubit: the
backaction additionally tilts the relaxation mode vector from
€| — €, fr through the virtual-transition terms oA/ y.
However, the component of 7(¢) along the tilted relaxation
mode vector e.sr o shows also an oscillation (superposed on
an exponentially decaying contribution) as the red curve in
Fig. 11(a) illustrates. This is an effect of the mode distortion:
the plane spanned by the unit vectors e ; and eq » is not
anymore orthogonal to e o. Since the precessing part of
the isospin lies in this plane, the projection of the isospin
T(t) on e o becomes oscillatory as sketched in Fig. 10(b).
These oscillations are therefore damped with the dephasing
rate 1/ 75, which differs from the relaxation rate 1/7; that sets
the time scale for the exponential decay of the nonoscillatory
contribution. Thus the nonorthogonality of the isospin mode
vectors mixes relaxation and dephasing in a nontrivial way.
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FIG. 10. Distortion of isospin modes: (a) Comparison of the
components of the high-temperature approximation (79) for the
isospin 7(¢) along the mean-field qubit axis, e, = @/, (black), along
the tilted relaxation mode vector e o (red), and along its dual € o,
(blue) as a function of time. Plotted are In(e; - ) 4 ¢/T; (black),
In(ecsr0-7)+¢t/T1 (red), and In (€ 0/|€csr0]) - T) + /Ty (blue),
respectively. The initial state is given by p'(0) =1— p°0) =0,
7(0) = 7°(0) = 2 and all other parameters as in Fig. 9. Note that the
decay of the precessional component is hardly visible here because
T, =~ T, for the parameters chosen here and because of the short time
window shown in this figure (see Fig. 8) (b) Sketch of the orientation
of e, e 0, and & o relative to the ecr j-€. o plane. The thick
green line indicates the precession of the isospin in a plane parallel
e 1-€csr » plane and shifted along e o. The precessing part of the
total isospin leads to an oscillation along the components along e o
(as indicated) and also along e;. Only the component along & o does
not oscillate.

The only component of z(¢) that does not oscillate for
an arbitrary initial state is the one along €. o as the blue
curve in Fig. 10(a) shows. The reason is that the dual vector
€eff 0 X €eff.] X €efr 2 1S normal to the eq j-€qfr » plane [see
definition (94)]. This normal component is also independent
of the dephasing time: it simply decays exponentially with the
relaxation rate 1/ 7.

However, the dual vector €. ¢ should not be confused with
the zero mode e : If we initially have T.¢(0) o € o, then
the isospin still has a precessional component since & o 1S
not the relaxation mode vector. If one aims to prepare the
qubit in a state whose Bloch vector direction is stable under
the time evolution that includes the measurement backaction,
one should take

Tef(0) = Feegr o, (98)

where F is suitable real constant.!! For the initial state (98),
we indeed find pure exponential decay to the stationary state
7(00) = 0:

T(t) = Fe ' Tegy . (99)

The above illustrates that the notion of “exciting a qubit mode”
has to be treated with care due to both backaction-induced

""Note that 7.4(0) differs from the initial isospin 7(0) due to the
initial slip (81) and therefore F is not necessarily limited to the range
[-1, + 11
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initial slip and due to mode vector distortion. Due to the initial
slip discussed above, one has to prepare the qubit-sensor state
[see Eq. (72), Eq. (81), and Appendix C] very carefully in
order to achieve the initial condition (98).

2. Elliptical precession

The second qualitative consequence of the distortion of the
qubit modes due to the finite decoherence rate concerns the
precessional motion in the e.s 1-€cfr » plane with normal € .
The trajectory of the isospin vector 7 (¢) in this plane is changed
from a circle to an ellipse. We illustrate this in Fig. 11(a) for
an effective initial isospin T.g(0) = Fee ; lying in this plane
(again for a suitable real constant F'). Applying Eq. (79), the
evolution of the isospin can be expressed as

(1) = e /T Flcos(Q1)ees 1 + sin(Qt)eerr 2] (100)
= e’/TZFI:,/l —€/2cos (Qt + %)Vl
+/1+€/2sin (Qt+%>v2}. (101)

In the rewritten form, the part in the bracket describes an
elliptical motion with linear eccentricity

1 A Q2
= =r——===,
QT y Q2 Q?
which is maximal near the resonance of the sensor QD [due
to r, see Eq. (62)] and proportional to the scale )»2[7/ for
the decoherence rate relative to the qubit frequency €2. The
precession plane is spanned by two orthonormal vectors,

€ = 2@c,1 - €ff2 = (102)

€off 1 = €eff 2
J2+€

which are at the same time unit vectors along the principal
axes of the precession ellipse as sketched in Fig. 11(b).

Equation (101) shows that the magnitudes of both principal
axes shrink exponentially with rate 1/7,. The magnitude of
the isospin [green curve in Fig. 11(a)] thus oscillates around a
pure exponential decay with that rate [blue curve in Fig. 11(a)].
The oscillations are a signature of the elliptical distortion of
the precessional motion.

If there were no mode distortion, the above picture would be
true also for slipped initial states out of the e; .g-€ o plane.
However, due to the mode distortion arbitrary initial states
must again considered with care because the projection of
7(t) onto the e |-€.fr 2 precession plane has an additional
contribution arising from the component of T along e o
[see Fig. 10(b)]: this causes the center of the ellipse to be
shifted away from origin. This shift of the center decays
exponentially towards the origin with the relaxation rate 1/ 77,
which is again different from the decay rate of the precession,
which is damped with the dephasing rate 1/75.

Relation to state purity. The discussed elliptical isospin
motion reflects the exponentially damped but oscillatory
decrease of the qubit-state purity due to the readout by
the sensor QD. This can be roughly understood as follows.
The dephasing is the strongest when the isospin and the
measurement vector A are perpendicular to each other because
this corresponds to the charge qubit electron being delocalized

Vip = (103)
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FIG. 11. Elliptical precession. (a) Magnitude of the high-
temperature approximation of the isospin |z(¢)| (green). We take
the initial condition p'(0) = 1 — p°(0) = 0, T.(0) = e | here such
that 7(z) evolves in the e.s |-€.s » plane. From Eqs. (92) and (93), itis
easy to see that e, | has a much larger component along X than €cff 2,
leading to a stronger decay initially (see explanation in the text). The
oscillating deviations of the isospin magnitude from the exponential
dephasing, |T.;(0)|e~"/™2 (blue), reveal the elliptical precession. All
other parameters are as in Fig. 9. Although the effects are weak in our
controlled perturbative calculations, they indicate qualitatively new
features that can be expected to grow for stronger readout couplings.
(b) Two-dimensional sketch of the ellipse with principal axis v, and v,
[see Eq. (103)] described by the tip of the isospin for initial condition
as in (a). The exponential shrinking with rate 1/7; is not indicated
for simplicity.

between the two sites. Here, small fluctuations in the detuning,
induced by the stochastic switching of the SQD, then introduce
a strong dephasing. By contrast, no dephasing appears when
the isospin and the measurement vector A are collinear, i.c.,
when the charge qubit electron is localized in one of the QDs.
This interpretation is consonant with the situation in Fig. 11(a),
which shows the magnitude of the qubit Bloch vector as a
function of time. The qubit Bloch vector has initially a large
overlap with &, leading to a suppressed decay in the first quarter
of a precession period 27 /2. The oscillatory reduction of the
qubit purity was anticipated also in our discussion of the exact
relation (18),

d 2 0 1

E[Ir(t)l I==2k-[r7() x T (1)]. (104)
If 7(¢) precesses, its charge-specific components t”(¢) also
precess and their components along A change in time, resulting
in a nonexponential purity decay.'”

Finally, we note that these oscillations of the purity decay
are not an effect of non-Markovian corrections [see Egs. (71)
and (72)] induced by the sensor QD onto the qubit by
capacitive interaction A: they may even be reproduced by
modeling the SQD charge as a classical fluctuator (see,
e.g., Refs. [76,77]). In fact, to obtain Eqgs. (79) and (81),
we employ a Markovian approximation with respect to the
sensor on the qubit (by setting z =0, see discussion in
Appendix B 3 c). The oscillations of the qubit decay should

2We note that applying Eq. (104) requires a calculation of the
charge-specific isospins from the full kinetic equations (26). Using
only the projections quasistationary subspace, X4(¢) = (1 7(¢))', see
Eq. (B26), would just yield zero when inserted into Eq. (104).
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also not be mistaken for coherence revivals, i.e., an increase
in the purity of the qubit state. Figure 11(a) clearly shows
that the magnitude of the qubit Bloch vector decreases for
all times, i.e., the information is permanently transferred to
the environment during the measurement process. However,
the rate of information loss is nonmonotonic, which simpler
approaches might not predict (see, e.g., Ref. [40]). This shows
most clearly that our perturbation theory goes beyond the
simple “mean-field” detector picture discussed in Sec. IV B.

V. COMPARISON TO OTHER APPROACHES

In this final section, we compare our results for the
measurement backaction with the results of prior works. One
of the central results that we obtained—the strong suppression
of the measurement backaction when tuning the sensor into
the Coulomb blockade regime—is surprising: one expects to
underestimate the measurement backaction by a too simplified
treatment, which ignores cotunneling noise. We accounted for
this cotunneling noise contribution (“broadening” contribution
to the rates) but our result (65) revealed that it is canceled out
by the coherent backaction, a renormalization effect. Such a
cancellation should of course be viewed very critically and we
have carefully traced its origins. It also raises the question,
which physical assumptions and approximations may have
caused it not to be noticed before. This is discussed here.

We first show in Sec. V A that semiclassical approaches can
only reproduce the contributions to the decay times induced
by the stochastic backaction, but they fail to account for
corrections from the coherent backaction. This also quite easily
happens within a standard weak-coupling Bloch-Redfield
approach aimed at finding a qubit-only description as we
discuss in Sec. V B. Both these approaches are correct only
under the assumption of the weak-coupling, high-temperature
limit, which may experimentally be violated and does not
allow the sensor QD current to be calculated. Finally, we
show that our findings are in accordance with exact quantum
treatments of models of decoherence due to noninteracting
two-level fluctuators in equilibrium, insofar a comparison is
possible.

A. Semiclassical stochastic approaches

A popular way to study the decoherence a qubit suffers
from the coupling to its environment is a semiclassical qubit-
Sfluctuator model [24,26-28,78]. In this approach, the qubit
is considered subjected to noise generated by a randomly
switching two-level system. The basic idea is to replace
the occupation number 7 of the SQD in the interaction
Hamiltonian, H; = il - T/2, by a classical random process
A — £(t)/2."3 Applied to our case, the SQD introduces a
fluctuating effective magnetic field acting on the qubit [see

13We introduce a factor 1/2 for convenience to adjust the amplitude
of the fluctuations to A§ = 2, as usually used for a random telegraph
process.
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Eq. 2D)]:

1 1 .
HY = 5(9 + 55(:») -1 (105)
Since our primary interest lies in the interplay of the coherent
backaction with the cotunneling-induced backaction, we can
take 2 = 0 and drop the spin degree of freedom of the SQD
electrons and therefore the effect of the Coulomb interaction
in the following. Neither of these assumptions are critical for
reproducing these effects (see Appendix D). The measurement
then induces a dephasing of superpositions of the qubit states
|L) and |R), physically related to the double-QD electron
residing either in the left or right QD. This can be characterized
by the decay of the off-diagonal elements of the qubit density
matrix, the visibility [23,24,76]

(2,()) = ((L]e™ Jo dnHE L) (R]e™ Jo duHE | RY) - (106)

Here, the bracket (...) denotes the average over many
realizations of the random process £(¢) with (£(¢)) = 2p31t.
Splitting the qubit Hamiltonian Hy = (Hg) + 8 Hp according
to Eq. (21) into a mean-field part, (Hp) = %pit)» -7, and
a fluctuating part, §Hy = iéé(t)k -7, with §&(t) = &(t) —
(&£(¢)) and (6&(¢)) = 0, Eq. (106) can be recast as

(2,(1)) = (77 lodndE), (107)

Hence the decay of the coherences depends only on the
“amplitude” of the fluctuations, while the average of the
fluctuations, (£(z)), is irrelevant. This mean-field part just
induces a constant shift of the qubit energy level, which has
been absorbed into the average (Hy), see our discussion of the

mean-field picture in Sec. IV B 1.
For simplicity, let us first take 6& (¢) to be a Gaussian random
process. In this case, Eq. (107) can be rewritten as [24]
(e Jodnse)y o5 lan fy dnEsEn)  (108)

resulting in an exponential decay of (7.(t)) = e~ /T The
dephasing time,

(I T AR ()

T, Ty, \2 2

can be related to the noise power spectrum Ss:(w) of the
Gaussian random process 8&(¢) [24],

(109)

+o0 )
Sse(w) 1=/ dre™"" (6£(0)58(7)),

oo

(110)

where we used that the correlator (§&(¢))8&(¢,)) only depends
on the time difference T = t, — #; because a Gaussian random
process is time-translational invariant. We emphasize that the
relation (108) holds exactly for a Gaussian process, whose
entire statistics is fixed by two-point correlation functions.
For a general random process, however, higher-order
time correlators may contribute to Eq. (108) [24,28,79] and
therefore the spectral function is not sufficient to characterize
a random process completely. A prominent example is a
Poisson process inducing random telegraph noise. Such a
process would actually be a better model for a capacitively
coupled QD stochastically switching its occupation due to
tunneling processes. Random telegraph noise has also been
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extensively studied to explain the origin of flicker (1/f) noise
in superconducting qubits [24-26,28,78] and Gaussian noise
in semiconductor QDs [80,81]. This noise results from an
ensemble of fluctuating background charges, each of which
may be compared with our sensor QD, except that they do
not carry a current on average. The non-Gaussian behavior of
the Poisson process comes to light only if a few fluctuators
dominate the decoherence of the qubit state, which entails
a nonexponential decay of the coherences [22,24,76,77] and
even coherence revivals have been predicted [76,77].

The impact of charge fluctuations of an individual QD
have also been modeled by classical random telegraph process
[24,82]. In general, §& switches between two values 4§,
(upper), and 6&; (lower) with different switching rates 1/
for 8¢, — 8&;, and 1/7, for 6§ — 68&,. This gives rise to
different probabilities p, to find the value &£,, and p; to
find the value §§;, respectively. In the weak-coupling limit,
ALy =1/t,+ 1/7, it turns out that the dephasing is still
exponential and the dephasing rate reads as'*

(/2

1~[1 ( ]
T2 ~ Du D1 Y .

(111)

Identifying p, — pl and p; — p® with the stationary occu-
pation probabilities of the SQD for our case and noting (A -
eH)2 =1 for @ =0, Eq. (111) reproduces the the dephasing
rate (89), which we obtained in the high-temperature limit.

Yet, in the classical fluctuator model, we have not explicitly
assumed high temperatures. Thus, if one naively extends
the above result to include cotunneling corrections, one
gets a faulty result. The cotunneling changes the occupation
probabilities pY and p! and the switching rate y, but there is
no way in which additional coherent backaction terms could
appear [see the transition factor r, Eq. (62)]. As a consequence,
one might overestimate the qubit dephasing rate at the onset
of Coulomb blockade. In addition, the classical approach does
also not account for the dissipative backaction, which is less
important for the dephasing times as compared to the coherent
backaction. '3

The reason why the above classical approach is not able to
reproduce the coherent backaction is that the electron number
n is a classical variable with a definite value at each instant
of time, meaning the SQD is fluctuating between the states
[0)(0| and |1)(1|, where |n) denotes the SQD state with n
electrons on it. In this way, it can only produce the stochastic
backaction. Quantum coherences |0)(1| and |1){0| involved
in virtual processes of the SQD (quantum fluctuations), which
play arole during the tunneling, are disregarded here. However,
as we illustrate in Appendix D, these coherences—included
in our calculation—are crucial for obtaining the coherent
backaction. (Note that despite this, such coherences can not
appear in the real quantum state, the relevant density operator
p [see Eq. (12)] due to charge conservation.) It turns out that

'“We adjusted the notation in Ref. [82] to our notation by replacing
1/tp=1/t,+ 1/ =y and Jr — A/2.

SThe reason is that the dissipative backaction does not affect
the coupling between the quasistationary and decay modes [see
Eqgs. (61)—(63)].
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the related quantum fluctuations induce an additional “phase
kick” while a charge transition in the SQD takes place. This
phase shift partially compensates the phase shift from the
stochastic backaction while the SQD is in a specific charge
state. This makes plausible why quite generally one may expect
a coherent backaction that mitigates measurement backaction
when employing a quantum sensor for the indirect detection of
a qubit. Thus a purely classical understanding of the indirect
measurement backaction due to a sensor QD is incomplete.

B. Bloch-Redfield approach

Another frequently employed method to study decoherence
is the Bloch-Redfield approach [63,83], also in the context of
qubits [26,27]. In the original presentation [83], this approach
is first developed for a semiclassical'® and after this also
for a quantum perturbation. In both cases, one considers the
limit of weak coupling between a quantum system and its
environment and an additional Born-Markov approximation
is made. Importantly, the approach generally predicts an
exponential decay into a stationary state irrespective of the
statistics of the environmental fluctuations. The corresponding
relaxation matrix of the reduced density matrix is furthermore
related to the noise power spectrum of the perturbation.

1. Stochastic backaction in spectral function

For our case, the Bloch-Redfield approach confirms the
dephasing rate (109) also within a quantum treatment: one
simply has to replace in Eq. (110) the classical average
(6&()6&(t + 1)) by the quantum-ensemble average:

400
Ssi(w) = [ dte T A5A)SA(L + 1)), (112)

[o¢]
For an indirect readout model of interest here, one treats the
SQD as a noninteracting two-level quantum system in contact
with a thermal reservoir. Applying the results of Ref. [25] for
a single fluctuator, the spectral function reads'”

— 1 021 2
Su@ =[1=(pe=p)lmrs 413
leading to Eq. (111) when inserting Ss;(«w = 0) into Eq. (110).
Hence, also the Bloch-Redfield approach—even accounting
for a quantum environment—does not reproduce the coherent
backaction and may therefore be applied only in the high-

temperature limit to derive dephasing and relaxation times.

2. Difficulty of capturing dissipative and coherent backaction

The reason why the Bloch-Redfield approach fails to
account for the dissipative and coherent backaction is not
specific to this approach. It is rather a problem that appears in

16T Redfield’s notation in Ref. [83], the random perturbation is for
our model given by G(r) = %S(l)x - 7.

"To compare with Eq. (7) of Ref. [25], we note that for our
model there is no direct hybridization A; = 0 between the orbital
levels of the SQD, i.e., cos(f;) = 1, and sin(f;) = 0. Furthermore,
the relaxation rate I' ; to the stationary state is identified with y
here.
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principle for any procedure that tries to treat the sensor in an
indirect measurement setup as a given environment without
a nonequilibrium dynamics of its own. Such an approach
always needs to make some assumptions about the sensor
density operator, which, as we have seen, does not seem to
have a simple structure allowing for an educated guess based
on general physical principles. This means that one should
simply calculate the joint quantum state of sensor QD and
qubit, which is what we have done. It is, however, instructive
to further understand the problems encountered when one tries
to avoid this by making (too) simple approximations of this
joint state.

(i) The Bloch-Redfield approach (as well as many other
density-operator approaches) applied in the weak-coupling
limit involves a factorization assumption [84] for the state
of the qubit and its environment (here the sensor QD
plus the reservoir): pui(t) & po(t) ® psgr(t). The factorization
assumption ignores the dissipative backaction and is valid
only in the high-temperature limit. Otherwise, the dissipative
backaction leads to a nonzero stationary qubit Bloch vector
that reflects the nonfactorisability of the qubit-environment
state even in the stationary limit. By contrast, to find the
decoherence rates in the long-time limit # — 7y > 1/, the
factorization assumption may still work.

(ii) The next critical point is then to find a proper description
for the unknown evolution pgg(t) of the environment. An
assumption frequently made is that the qubit environment is in
astationary state, psg(t) = psr. st, for example, an equilibrium
state. However, stationarity of the entire qubit environment
(SQD plus electrodes) is actually never reached whenever
a measurement is performed, for which the electrodes must
be held at finite bias to produce a nonzero measurement
current. Here one should be careful to note that while the
reduced sensor QD density operator may become stationary
after some time, this is not true for the joint SQD-electrode
state. In our approach, the reduced sensor-qubit system can
become stationary after eliminating the electrodes, which are
stationary.

(ii1) Even if we further simplify the problem and assume
zero bias voltage (e.g., to compute the measurement backaction
in linear response) and psg, oq is stationary, then it is still
difficult to compute the equilibrium state psg q since the
sensor QD is a strongly interacting system. Naive assumptions
made about psg o are prone to errors. Consider for instance
the approximation pgr, eq = Os,st ® Or,0, Where pg g denotes
the stationary SQD state and pg is the grand-canonical
equilibrium state of the reservoirs. (One may be inclined to
make this approximation since weak coupling I" often implies
such a factorization.) If we use this state and average the
two-point charge correlator in Eq. (112), this involves only
charge-diagonal SQD states |0) (0| and |1)(1]|—similar to the
semiclassical approach of Sec. V A. What goes wrong here
is that pg & ® pg.o is not the correct equilibrium state if we
go beyond the lowest-order I approximation in the tunneling.
For larger I', the hybridization between both systems cannot be
neglected any more [84]. During tunneling processes the total
system can be in virtual intermediate states involving sensor
QD coherences |0)(1| and [1)(0| and corresponding charge
coherences in the electrode. These intermediate virtual states
explicitly appear in the calculation of the coherent backaction
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(see Appendix D). Thus even the quantum-ensemble averaging
procedure that brings us from Eq. (112) to Eq. (113) misses
the coherent backaction since it relies on a weak-coupling
expansion between SQD and electrodes.

This explains why for an indirect weak measurement setup,
the procedure employed in this paper and also in Refs. [29,30]
seems unavoidable. By integrating out the electrodes first,
one incorporates their effect on the joint sensor-qubit system.
As we have seen, this reveals that the qubit experiences a
stochastic, dissipative, as well as a coherent backaction effect.
This problem of describing the nonstationary environment is
specific to indirect measurement setups and not encountered
when the qubit is directly coupled to, e.g., a stationary
environment. This is the case, for example, for a bath of
harmonic oscillators as in the spin-boson model [27,85,86],
where the environment may indeed be described by a stationary
equilibrium state. Yet, previous studies for other types of
environments also show that the approximations made to
integrate out the entire qubit envronment can be too crude,
including both a spin-boson model [87] and a driven two-level
fluctuator [88]. In particular, Ref. [88] explicitly compares
results for different levels of approximations showing the
breakdown of Markov and secular approximation beyond the
weak qubit-environment coupling.

C. Nonperturbative quantum solutions

Our study indicates that renormalization effects, based on
quantum coherences between the qubit and its detector, are
vital for the description of the measurement backaction even in
the weak-coupling limit. We next compare our results to prior
studies that treat the qubit decoherence arising from single
fluctuators coupled to fermionic reservoirs fully quantum-
mechanically.

Such studies employ various approaches, such as an exact
numerical evaluation of the visibility (106) using electrodes
of finite size [76], a Heisenberg equation-of-motion technique
[22], or a Keldysh path-integral formalism [22,23]. All these
approaches are nonperturbative both in the measurement inter-
action A and the sensor tunneling I'. However, in contrast to our
model these studies are limited to noninteracting fluctuators
(here the SQD) in equilibrium with a single reservoir. Thus
they cannot access the situation of a (nonequilibrium) signal
current through the fluctuator, an essential aspect of the indirect
detection that we do consider. Moreover, they only consider
qubit energy splittings along the measurement vector, in our
notation Hy = 7;/2, that is, they only study pure dephasing
in which the qubit Bloch vector has no precessional motion.
This leads to drastic simplifications employed in the derivation
of these approaches which limit their applicability.

References [76,77] highlight coherence revivals for the
short-time transients in the strong measurement regime A >> I'.
This nonexponential decay reflects the non-Gaussian statistics
of the quantum telegraph process. Moreover, these studies
also find oscillatory corrections to the dephasing even in the
weak-measurement regime A < I' in agreement with our work
(see Fig. 11). The dependence of the dephasing rate on the
level position is not reported and thus cannot be compared.

In Ref. [22], a path integral method is used to study the qubit
decoherence due to two-level fluctuators. Their dephasing rate
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also includes terms containing the real part of the digamma
function v, which determines the renormalization function
¢ [Eq. (30)]. It appears both in the cotunneling rates [see
Eq. (27)] as well as in the coherent backaction [Eq. (35)]. In
contrast to Ref. [22], our expressions depend on the derivative
¢’, which is arises from our expansions in A and I'. However,
a direct comparison is not possible because tangible results of
Ref. [22] are actually given only for the sequential tunneling
regime where renormalization effects are neglected.'®

Reference [23] also uses a path-integral approach and
considers also the case when the QD level ¢ is tuned strongly
away from resonance |¢ — w|/T >> 1. Expanding their result
(Eq. (15) of Ref. [23]) for the long-time limit of the dephasing
rate in the weak-measurement limit, we obtain'’

1T 21
T,  4m (e — p)

Thus the dephasing rate drops algebraically in the fourth power
with the level position. This is consistent with our results in
the sense that also here the decoherence does not scale as
expected from the cotunneling noise. In our case, we were
only able to show that the algebraic scaling in 1/(¢ — p) is
suppressed at least to the second power (see Sec. IIID 1).
However, our analysis revealed the physical origin of this
behavior by identifying what cancels the expected cotunneling
noise contribution, namely the coherent backaction. Note
that the result (114) does not rely on the high-temperature
assumption I'/T « A/ T as in our case, which is why their
result can be expanded in orders A/ " while accounting also
for higher-order tunneling corrections [e.g., O(I'*/T?) and
higher, see Appendix B4]. This implies that to compare
concretely with their result (114), we would have to include
higher-order tunneling terms, which, however, we do not
expect to restore power laws with lower exponents. This is
challenging for our model since we account for Coulomb
interactions and nonequilibrium conditions. This is beyond
the scope of the present paper.

In summary, various aspects of our assumptions and
findings seem to be in accordance with previous approximate
as well as exact quantum-mechanical treatments and shed
new light on them. Our study extends these approaches by
simultaneously dealing with a nonstationary, nonequilibrium,
Coulomb-blockaded sensor QD (fluctuator), which is fully
quantum-correlated with the qubit (nonfactorizing density
operator p, virtual off-diagonal charge coherences during
tunneling). The latter leads to the coherent backaction as an
integral part of the total backaction together with stochastic
and dissipative backaction, leading to the cancellation of
cotunneling noise.

+ O((r/ Y. (114)

VI. SUMMARY AND OUTLOOK

We studied an indirect detection setup, in which a charge
qubit is capacitively probed (A) by a sensor quantum dot

18This is a consequence of the approximation K» ;(A) ~ K, ;(0)
employed below Eq. (3) in Ref. [22].

19We express the parameters g and & in Ref. [23] in terms of our
notationas g = A/I"and & = 2¢/T.
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(SQD). The SQD is in turn tunnel coupled (I") to electrodes in
which the time-dependent conductance is measured. Electrons
in the sensor QD occupy a single quantized orbital in which
they strongly interact.

Kinetic equations. We considered the weak-tunneling,
weak-measurement limit I'/7T < A/I" < 1, in which quan-
tum fluctuation effects are important on the time scale of
the qubit-sensor interaction. We derived a kinetic equation
[Eq. (26)] by integrating out the current-carrying electrodes
to obtain an effective theory for the composite qubit-SQD
system. This revealed three types of backaction on the qubit: (i)
a stochastic backaction due to random fluctuations of the qubit
detuning, (ii) a dissipative backaction (coefficient c), the flip
side of the modulation of the sensor tunnel current by the qubit,
and (iii) a coherent backaction due to the level renormalization
of the composite qubit-SQD system (coefficient «).

We showed the importance of the effects of single-electron
tunneling (SET), as well as its cotunneling broadening and
level-shift corrections. We also included the leading non-
Markovian correction from the electrodes induced by the
tunnel coupling (I") to the SQD (linear kernel frequency depen-
dence). Moreover, our approach captures all non-Markovian
effects introduced by the sensor QD on the qubit subsystem,
which are mediated by the capacitive interaction.

Suppression of cotunneling-induced backaction. By rewrit-
ing the kinetic equation in the basis of quasistationary and
decay modes (defined by the A = 0O limit), we found that the
interplay of these types of backaction leads to a nontrivial can-
cellation; whereas the dissipative backaction (c) independently
couples these modes, the stochastic backaction and coherent
backaction (k) partially cancel. In particular, the change in
the stochastic backaction due to cotunneling broadening is
canceled by the coherent backaction [Eq. (62)]. The expected
algebraic decay oc1/(e — u,) of the backaction (determining
the decoherence rates) is thus suppressed, implying that the
actual power law must at least have a higher exponent.
Experimentally, this is important since it indicates that a
SQD can be switched off by applying a gate voltage better
than expected. By identifying the underlying physics, we
suspect this to be a crucial difference with the backaction
of sensors with dense level spectra, such as single-electron
transistors. Thus the less-than-expected backaction due to the
coherent backaction is beneficial for switching the sensor
on/off, provided one takes care to prepare sensor state to avoid
initial slip errors (see next paragraph).

Initial slip. We derived effective equations for the reduced
qubit density operator [Eq. (71)], which are exact relative
to the kinetic equations (26). In particular, we keep all
non-Markovian effects induced by the sensor and account for
a slip of the initial condition [Eq. (72)]. This slip depends
on both the initial sensor QD state and the initial quantum
correlations with the sensor QD. It is important for the
long-time qubit evolution and thus the sensor QD needs also
to be considered as part of the dynamical quantum circuit.
The dynamical state of the sensor QD is relevant for qubit
error propagation, e.g., the initial slip may introduce errors
even for perfectly prepared qubit initial states. This provides
a concrete example for errors usually phenomenologically
introduced in quantum-error correction. Such a sensor QD
cannot be considered (without further evidence) as a “black
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box” in a quantum circuit which is merely characterized by
static parameters (e.g., relaxation and dephasing times). This
is different from the treatment of the macroscopic electrodes
coupled to the sensor QD. The electrodes, in which the current
measurement is performed, can instead be assumed to be
stationary, which eliminates initial-slip effects on qubit-SQD
system (provided initial quantum correlations are neglected).
High-temperature limit. Specializing to the high-
temperature limit ['/7T — 0 and to times larger than the
SQD relaxation time 1/I", we obtained the qubit evolution
[Eq. (80)], which neglects non-Markovian effects induced by
the sensor QD. We connected dephasing and relaxation times
oA?/T with the component of the measurement vector A
along the mean-field qubit axis € and perpendicular to it,
respectively. We demonstrated the importance of the initial
slip <A/ " [Eq. (81)] even in this simplest limit: the set of
initial states of the qubit-SQD system without slip is only a
subset of zero measure. Generally, the magnitude of the slip
increases the “less factorizable” the qubit-SQD state is and the
“more nonstationary” the sensor QD is before the detection is
started. Due to the latter, the initial slip should be reckoned
with in particular when the sensor QD is initialized in a fixed
charge state. This happens, for example, when switching the
sensor off by tuning the gate voltage far away from resonance
or by reducing the tunnel coupling I" to the electrodes. By
contrast, switching off the capacitive interaction A leads to an
initially stationary and factorizable state, which is favorable
for avoiding an initial slip. This difference in the backaction
between various parameters for switching off a sensor QD
is an important experimental implication of our study. The
need to control not only the qubit but also the readout device
carefully may not only be a nuisance for engineering quantum
circuits but could also provide additional means of controlling
qubits. For example, one could consider to switch the SQD
during the readout to another readout point to compensate for
manipulation errors detected in a weak measurement process.
Mode distortion. The analysis of the isospin dynamics
showed that additionally the qubit eigenmode vectors are
distorted due to the small but finite value of the decoherence
rates ~A%/I". This corrects the simple mean-field picture, in
which the qubit axis € = @ + plA is only influenced by
the average occupation of the SQD. The distortion reflects
the breakdown of the secular approximation—often made in
derivations—because the capacitive coupling A can be of the
same order as the internal qubit splitting €2. Importantly, the
distortion must be included to satisfy an isospin sum rule that
follows from the conservation of the isospin by the tunneling of
sensor electrons [32,61]. The distortion is thus enforced by a
general principle. The experimentally relevant consequence
of this distortion for the qubit evolution is two-fold: first,
the usual circular Bloch-vector precession becomes slightly
elliptical, with a shape that is not altered in time as the size
shrinks with dephasing rate 1/7,. Second, this “precession
plane” is not orthogonal any more to the “relaxation axis,”
along which the Bloch vector decays with the relaxation
rate 1/7,. The relaxation axis is moreover slightly tilted
relative to the mean-field axis . Finally, the projections of
the isospin on the mean-field axis, the relaxation axis, and the
precession plane all show a superposition of relaxation and
precessional dephasing motion. The measurement backaction
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thus mixes the effects of relaxation and dephasing, even in
this simple Markovian limit. This effect may generally appear
in indirect-coupling setups, which are typical for detection
setups. The tilting of the qubit modes is related in a broader
context to the concept of “gauge qubits” [89]: two physically
distinct qubits can be each subject to strong decoherence
but the joint Hilbert space formed by both qubits may
contain a two-level subsystem with low decoherence. Locating
such subsystems is interesting for developing strategies for
quantum-error correction. In our case, the qubit mode tilting
reflects an “admixing” of the sensor QD degrees of freedom
to the low-decoherence subspace, which mostly overlap with
the qubit degrees of freedom. This mixing can be strongly
enhanced when the coupling of the quasistationary and decay
modes becomes stronger, which effectively happens, e.g., due
to enhanced quantum-fluctuation effects at lower temperatures.
Investigating this mixing further would therefore be interesting
also in the context of quantum-error correction strategies.

Comparison with other approaches. We compared the
above results at various points with existing approaches and
explained why potential differences are expected within their
validity. (a) Semiclassical stochastic approaches cannot cap-
ture the coherent backaction because the starting assumption
of classical charge fluctuations on the sensor QD already
excludes relevant quantum coherences of the qubit-sensor
density operator. Including these into the description leads to
additional “phase kicks” that counteract the stochastic “phase
kicks.” Both together, when averaged, lead to a mitigated
decoherence. It thus seems that one should quite generally
reckon with coherent backaction, which can mitigate the
measurement backaction when employing a quantum-dot
sensor for the indirect detection of a qubit.

(b) Density operator approaches that try to integrate out
the sensor together with the attached electrodes run into
problems as well because one needs to “guess” the time-
dependent, current-carrying sensor state as well as the quantum
correlations with the qubit. These can lead to non-Markovian
behavior and affect the initial slip of the qubit. All of
this is systematically calculated in our approach. The more
advanced approach of Ref. [53], which first calculates the
nonequilibrium SQD state in the absence of the qubit (an
approximation carefully pointed out in Ref. [53]), misses both
the dissipative and coherent backaction. Extending such an
approach, e.g., to include cotunneling broadening would thus
lead to inconsistencies since only one part of two canceling
effects is taken into account.

(c) Nonperturbative quantum solutions of related models
agree with the cancellation in the backaction we found here
as does a separate calculation for a noninteracting limit of our
model (U = 0).

(d) It is also interesting to compare with prior studies
not aiming at sensor backaction. In particular, Ref. [41]
highlighted the importance of a competition of next-to-
leading-order effects and non-Markovian corrections, which
are closely related to the non-Markovian corrections of
the first type affecting the dissipative switching rates (36)
discussed in Sec. III B4. However, what is imporant here
are non-Markovian corrections of the second type affecting
the coherent backaction. We stress that although these non-
Markovian corrections give an important part of the coherent
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backaction, they are not identical to it: the coherent backaction
already arises in the stationary limit that we studied in
Ref. [32] where non-Markovian effects can be neglected. In
this way, we see that the general line of thought emphasized
in Ref. [41] extends to the coherent backaction, which is also
a second-order effect, namely first order both in the tunneling
(I") and the measurement interaction (X).

Outlook. All this shows that the coherent backaction
and other quantum fluctuation effects (cotunneling, level
renormalization) are intrinsic effects of a guantum sensor: they
can neither be “added” or “controlled” independently in an
experiment, nor should they be neglected in a calculation.
In view of the above, further studies that can address the
experimentally relevant lower temperature dynamics of weak
measurements using quantum-dot sensors are necessary. We
expect the qualitative effects that we identified to be present
and quantitatively stronger under experimental conditions
where, e.g., the capacitive interaction and tunnel coupling may
not be weak anymore (e.g., because of the trade-off between a
significant current signal and low backaction). Besides the
commonly discussed relaxation and dephasing backaction,
also the qubit initial slip, nonorthogonal mode distortion, and
sensor-induced memory effects will be enhanced, neither of
which has received much attention so far.
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APPENDIX A: IMPORTANCE OF NON-MARKOVIAN
CORRECTIONS INDUCED BY THE ELECTRODES

In this appendix, we explain how to account for non-
Markovian corrections arising from the memory induced by
the electrodes on the qubit-sensor subsystem and illustrate
their importance for a correct description of the detector
backaction. One should clearly distinguish from this further
non-Markovian behavior induced by the SQD—with the effect
of the electrodes incorporated—on the qubit subsystem. This is
discussed separately in Appendix B 3 C. In Appendix A 1, we
show how the non-Markovian corrections due to the electrodes
can be incorporated within the real-time diagrammatic formal-
ism based on a perturbative weak-tunneling (I") expansion.
Within the leading non-Markovian correction included in this
paper, the kinetic equation remains a time-local and first-order
differential equation for the density operator. Based on this, we
then perform the weak-measurement expansion. In Appendix
A2, we show that neglecting the non-Markovian correction
leads to a violation of the positivity of the SQD-qubit
density operator and to an overestimation of the measurement
backaction. These unphysical features are removed when the
leading non-Markovian correction is included.

1. Incorporating non-Markovian effects
in real-time diagrammatics

In Ref. [32], we started from a kinetic equation for the
reduced density operator p(¢) of the joint system of SQD plus
qubit, obtained in the standard way by integrating out the
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electrodes’ degrees of freedom:

p(t) = —iLgsp(t) +f0 di'w@ —tHp). (Al

Here, Lyse = [Hgp + Hg + Hj,e] is the internal Liouvillian
of the reduced system with “e” denoting the operator the
Liouvillian acts on. The effects of the electrodes are in-
corporated in the kernel W, which we evaluated using the
real-time diagrammatic approach [65,66]. In Ref. [32], we
were only interested in the stationary solution of Eq. (Al),
p(t) = pg, which obeys py = 0. This solution depends only
on the time-integrated kernel fot dt'W(t —1t) = fot dTW(r).
In the long-time limit ¢+ — oo, when the stationary state
is approached, the time-integrated kernel is given by the
zero-frequency limit of the Laplace transform

oo
W(2) = / dre W (r). (A2)
0
Hence the exact pg is the same as the stationary solution of
the approximate, time-local Markovian kinetic equation,

2—/;(0 = (—iLgs+ W)p(1), (A3)
with W = W(z = i0).

Weak-tunneling expansion. Yet, in the present paper, we
study the nonstationary time evolution of the qubit-sensor
density operator p(¢) and we show now that this implies that
memory effects induced by the electrodes through the kernel
W have to be included. We will refer to all the effects of the
frequency dependence of W(z), Eq. (A2), as non-Markovian
corrections induced by the electrodes [even when effectively
a time-local equation results, see Eq. (A7)]. An approach to
include such corrections within the real-time diagrammatic
formalism has been given in Ref. [46], and applied to study
decay rates in Refs. [90,91]. The basic idea is to perform a
Taylor expansion of p(¢) in the integral in Eq. (A1) around
time ¢,

[e¢]

1 a
Io(t/):X:m p(t)(t’—t)",

n
e dt

(A4)

and to subsequently perform the integration over ¢’. This results
in a well-defined expression if the kernel decays faster than
any polynomial in ¢ — ¢/, which is usually fulfilled because
the kernel decays exponentially W(t — t') ~ e~(~!)/% on the
time scale of the inverse temperature tc ~ 1/ T .2

If we consider only times ¢ 3> 7., one may compute
Jodt'W(t —t')(t' —t)" = [, dTW(z)(—1)" by replacingt —
oo on the right-hand side since all contributions from > ¢ are
negligibly small. Taking advantage of the Laplace transform

20The correlation time is set by the time dependence of the contrac-
tion functions in the diagrammatic expansion (reservoir correlation
functions), which drop on the time scale of the inverse temperature
1/T, see Egs. (93) and (100) in Ref. [64]. Note that the contribution
from the stationary state pg just vanishes, i.e., W(t — t")py = 0 for
any time ¢’.
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(A2), we obtain from Eq. (A1)

dp(1)
dt

d"p(1)

, A5
ap (AS)

. 1,
= —iLgsp(t) + Z Ea w
with the nth derivative of the Laplace-transformed kernel (A2)
at zero frequency with respect to —iz:

_ " W(Z)

W = ———=
d(—iz)"

(A6)

z=i0

To include the leading-order non-Markovian corrections, we
truncate the sum on the right-hand side of Eq. (A5) and keep
only the terms with n < 1. This yields the following time-local
equation of first order in time:

A0 L il ys+ Wyplt) = —iLp(), (A7)
di  1—aw. resT PH= TR,
whose solution can be written as
o(t) = e 'L p(0) (A8)

for initial state p(0). When dropping the non-Markovian cor-
rection 1/(1 — dW) in Eq. (A7), one recovers the Markovian
generator of Eq. (A3).

We next show that this solution with L defined through
Eq. (A7) accounts for all non-Markovian effects up to
O(I'?/T) provided one is seeking for exponential solutions
of Eq. (A5). We do not discuss algebraic or logarithmic time
dependencies here, which may also appear [92]. Thus let us
substitute the exponential ansatz

p(t) = ¢ p(0), (A9)
into Eq. (A5). We obtain the following equation for A:
A=—iLops+W+@WA+---. (A10)

When all derivatives 0" W are dropped from the above equa-
tion, we recover the Markovian generator A = —iLgs + W.
Non-Markovian corrections therefore enter through terms
~0" W that capture the frequency dependence of the kernel
[41,43.,44].

Equation (A9) shows that the derivatives of the density
operator scale as d"p/dt" ~ A" ~T" since Los ~ A LT
and W ~ I' here. As a consequence, the expansion (A4) of
the density operator in corrections from higher-order time
derivatives is not independent of the perturbative expansion of
the kernel W in powers of I'. When expanding A in powers of
I', we find that the nth order derivative of the kernel scales
as 0"WA" ~ (I'/T")-T" plus higher-order corrections.?!
Thus, when expanding the kernel W = W' + ... only up
to first order in I', Markovian corrections must be ignored,

2I'This can be understood as follows: the finite frequency kernel
is given by Eq. (A6) in Ref. [32] by replacing i0 — z/T. Each fre-
quency derivative in 3" W acts on a propagator, i.e., it involves expres-
: 9 1 ~ L 9 1
sions such as 5 ey =gyt ~ T Wgs—an/T T % —Lgs—an/T”
which can be rewritten as a derivative of dimensionless energy ratios
and a factor 1/7T for each z-derivative. This yields schematically

I; n Los— . . .

Lo"W ~ (T, 7)6[“@{#)/“” 1(=2-%), where I is a dimension-
less function that contains the frequency integrals. Thus 9"W ~
I'/T" since W ~ I' (plus higher-order corrections).
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ie, AT = —iL + W', Yet, when expanding up to order
2 /T as considered here, one is allowed to omit terms
(@"W)A" ~(I'/T™) - T only forn > 2 from Eq. (A10), while
one has to keep the first derivative 3' W. Solving for A, we
obtain A = —iL = (1 —3'W) (=L + W)+ OI3/T?) in
agreement with Eq. (A7). Further expanding the inverse and
the kernel, we find for the effective generator:

—iL=(1+03"W')(—iLgs+ W)+ W/ (3 T?).
(Al1)

Weak-measurement expansion. The next step is the expansion
of —iL in A/T, where A ~ A, denotes the small energy
scale of the detection and intrinsic qubit frequency. While we
have to keep the first-order terms in A /T for

wh = who L wha f ora?,7?, (A12)

we can neglect the A dependence of
a'wr = aw™0 + o(raA/T), (A13)
WT = wr/TO 4 o(2A /T, (A14)

and obtain for the effective, non-Markovian generator
—iL = (1+3'W')(—iLgs + W) + W2 4 wr/T0
+O0@3 /T3 T2A/T? T A%/ T?). (A15)

We now note that in Ref. [93], we already computed the
kernels W0, WA and W0 and therefore we have to
merely evaluate dW "™ to obtain non-Markovian corrections
up to the order considered here. The frequency derivative of
oW"0 [see Eq. (A6)] can be easily converted into energy
derivatives (3/9¢),2> which results in the kinetic equation (26)
in the main text. It should be noted that dW "™ is not simply
the derivative of the SET contribution: the imaginary factor in
Eq. (A6) changes the role of imaginary and real parts, which are
related to § functions and principal-value parts in the frequency
integrals, respectively. While in the SET contributions only the
d functions remain and the principal-value parts cancel out, this
is opposite for the non-Markovian correction d W', These
principal-value parts evaluate to the renormalization function
¢(x) [see Eq. (30)], which is of central importance in our work
and explains how the non-Markovian corrections can affect
the coherent backaction as noted in Sec. III B 4. To evaluate
dW"0, one thus must first compute W, then apply 9 and
only after that take the relevant matrix elements (restricted
by charge conservation). This completes the derivation of
our non-Markovian Liouvillian, accounting consistently for
all terms up to O(A,I,\T'2/T.,TA/T).

To find the solution (A9) of the kinetic equation p(f) =
Ap(t), we directly solve for p(#) without expanding p(#) in
I'/T. Not solving the kinetic equation order-by-order®* avoids
well-known problems with ill-defined coherences [94] and

2The first-order kernel reads schematically W' (z) ~
[dxfE)/lz +x — L], ie, 8'WI'(z)~d/dL [dxf*(x)/[z+
x—L]J.

23To obtain a solution p(z) that is also consistently expanded to all
orders of A and I', one should insert the expanded density operator
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nonequilibrium occupations close to the Coulomb blockade
regime [66]. As a consequence, our solution can comprise
of terms of higher order in A/T and I'/T. In particular, the
stationary solution obtained from Apy = 0 differs formally
from that obtained by solving the corresponding Marko-
vian equation Ajw—opss = 0. However, the deviations are
of O(T3/T?T2A/T? T A?/T?) and therefore consistently
negligible in the perturbative limit considered here.

2. Retaining positivity and effect on coupling
of quasistationary and decay modes

In this appendix, we elucidate the importance of non-
Markovian corrections induced by the electrodes to describe
the indirect detection setup. We explicitly illustrate that
without these corrections the kinetic equations (26) for the
SQD-qubit system possess exponentially increasing solutions
in time and the measurement backaction is qualitatively
different.

In Ref. [32], we reported that the Markovian kinetic
equation when used to calculate a time-dependent solution
for the density operator p(¢) for the joint SQD-qubit system
violate the positivity condition, even though the stationary
state showed no such problems. (It should be noted that for
the stationary state to be positive, in addition to the dissipative
and coherent backaction also O(I'?/T) effects were required,
already hinting at the cancellation effect that we discuss in the
present paper.) The positivity problems for time-dependent
solutions arising in the Markovian approximation with respect
to the electrodes can be readily inferred by diagonalizing the
generator (A15) in that approximation:

—iLyw—ge = Z(bl + iai)AiStrQ[Ai.].

l

(A16)

Positivity violation occurs when at least one eigenvalue exists
with a positive real part,i.e., b; > 0. Thisleads to exponentially
growing contributions p(f) ~ pg + e’ p; [32]. Figure 12(a)
shows the two largest real parts of the eigenvalues of the
Markovian generator (A16) for typical parameters considered
in this paper. It illustrates that a positivity violation may appear
when the SQD is tuned deep into the Coulomb blockade regime
for e — u,|/T > 1 (see Fig. 7(b) in Ref. [32]). By contrast, if
we include the leading non-Markovian correction and use our
full equation (A15) instead, all eigenvalues have a nonpositive
real part for all gate voltages as shown in Fig. 12(b). Thus
no positivity violation can occur here. We investigated this
thoroughly by numerically exploring a large parameter regime.
We note, as already pointed out in Ref. [32], that the inclusion
of next-to-leading order I'’?/ T corrections in the tunneling is
also crucial to avoid such positivity problems.

To assess the importance of non-Markovian corrections for
the qubit backaction, we next consider the effective Liouvillian
(69) when starting from the Markovian approximation of
the generator (A16). As we discussed in Sec. IIIC3, the
importance of the coherent backaction can be assessed from

o(t) = p%0t) + p"0(t) + %2 + .- together with the expanded
kernels into the kinetic equation p(¢) = —i Lp(¢), and compare left-
and right-hand side in all orders.

045418-32



QUBIT QUANTUM-DOT SENSORS: NOISE CANCELLATION ...

x10~1 x10~ 1
4ﬁ Markovian non-Markovian
2
=)
- 0
=)
S
< 2
—4
(a) (b)
—30—20—10 0 10 20 30 —30—20—10 0 10 20 30
VolT VolT)
k=0
'NM
Kk#0
'NMm
(c) Markovian | [(d) non-Markovian
—-10 -5 0 5 10 -10 -5 0 5 10
VolT] VqlT]

FIG. 12. (a)and (b) Two largest real parts by,b, of the eigenvalues
of the SQD-qubit generator —i L, as a function of gate voltage V,. We
use the Markovian approximation (A16) of the generator —i Lyw—o
in (a) and the full non-Markovian generator (A15) in (b). (c) and (d)
Component of r [Eq. (A17)] along A. We show the projection ry =
rv A = pSpl + k(1 + pY) [see Eq. (A18)] within the Markovian
approximation in (c) and ray = rav - A = pOpl —k(pl/2 — pd)
[see Eq. (A19)] including non-Markovian corrections in (d). In (c) and
(d), the blue curves include the coherent backaction (« # 0), while
the green curves exclude them by hand (« = 0). The parameters in all
plotsare V, =0, =Ty =T =1072T, A =Q =0.1T = 10T,
and W = 1000T.

the transition matrix from the quasistationary into the decay
modes. In both cases, the transition matrix takes the form

(14 pY)ch - ey
—el - (r x ey)

dg _ 0
A= ((1 + p%)el. - (ch) ) (A17)

where in the Markovian approximation the vector r reads
= (14 )@+ [l + b1+ )R (AL8)

and when including the leading non-Markovian correction [see
Eq. (61)], the vector r reads

rnu = [Papy — k(3P4 — PR) A (A19)

which is the central result (62) discussed in detail in the main
text. The non-Markovian corrections lead to two important
differences between Egs. (A18) and (A19).

First, the coherent backaction leads to a different gate-
voltage dependence of the transition matrix when non-
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Markovian corrections are neglected. To illustrate this, we
plot in Figs. 12(c) and 12(d) the component of ry; and rav
along the measurement vector A. Due to the cancellation
effect explained in the main text, the coherent backaction
suppresses the transition factor in the non-Markovian case,
leading to an exponential gate-voltage dependence. This is
different for the Markovian case; here, the term arising from
the coherent backaction, (1 + pgl), changes sign at resonance
and enhances the transition rate into the decay modes for
positive gate voltages [see Fig. 12(d)]. Moreover, the transition
factor scales there algebraically with V, in stark contrast to
the exponential dependence in the non-Markovian case.

The second difference between Eqgs. (A18) and (A19) is
that the vector ry; in the Markovian case also has a component
along 2. This component emerges because in the Markovian
approximation the coherent backaction appears as torque terms
in the kinetic equations that are proportional to x (2 + 1/2)
(see Eqgs. (25) and (26) in Ref. [32]). By contrast, in the non-
Markovian case the torque terms involve only the vector A
[see Eq. (26)]. Both these differences clearly show that non-
Markovian corrections induced by the electrodes have crucial
consequences for the total backaction due to the capacitive
interaction A and must be accounted for consistently.

APPENDIX B: LIOUVILLIAN PERTURBATION THEORY

In this appendix, we derive the effective Liouvillian (69)
that we investigate in the main text to study the measure-
ment backaction on the qubit evolution. We first keep our
formulation as general as possible to bring out the generic
features and to indicate that this procedure can be applied
also to more complicated indirect detection models. An
important prerequisite is that one can identify a subspace of
interest in Liouville space whose dynamics takes place on a
time scale that is well separated from the dynamics in the
complementary subspace. In our situation, this is related to the
slow dynamics ~1/A of the subspace of the quasistationary
modes as compared to the fast dynamics ~1/y in the subspace
of the decay modes. Using the well-established projection
technique [71,72] along the lines of Chapter 17 in Ref. [70], we
outline how to obtain an effective Liouvillian that mediates the
dynamics in the subspace of interest only. In contrast to most
cases found in the literature, the unperturbed problem onto
which we project already exhibits non-Hamiltonian dynamics,
i.e., Le # [H,e], see discussion after Eq. (B37). Therefore we
review these steps here to highlight that the initial slip is a
general phenomenon that appears when projecting out a com-
plementary subspace. This in fact prevents a full elimination
of these degrees of freedom unless special conditions apply. In
the high-temperature limit, the projection can be analytically
performed and we can obtain the effective Liouvillian and
initial slip perturbatively in the coupling strength between the
relevant subspace and its complement.

We give here two complementary approaches. The first one
is given in frequency space in Appendix B 1, which allows for a
very compact procedure. However, to understand the physical
meaning of the involved approximations, we also show how to
obtain our results in a time-space formulation in Appendix B 2.
In Appendix B 3, we then apply our general Liouville-space
projection technique to the detection setup considered in the
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main text. We finally derive the effective transient evolution
of the qubit, Egs. (79)—(81), by removing the SQD degrees of
freedom as far as possible.

1. Derivation in frequency space

We start with the derivation in frequency space by applying
a general projection technique. This results in the most
general expression for the time evolution, for which we give a
perturbative expansion subsequently.

a. Liouville-space projection technique

Consider a system with density operator p whose time
evolution is generated by a Liouvillian L, i.e.,

p(t) = —iLp(t), (BI)

with initial condition p(0) given at time = 0. We refer to L as
the Liouvillian although it might not have a simple commutator
structure and can have dissipative, non-Hermitian parts. To
solve the above equation, one can transform it to Laplace
space. The Laplace transform of a function f(¢) is defined as
f@) = [° dte’™ f(1). This yields using Eq. (B1):

—izp(z) — p(0) = —iLp(2). (B2)

Next, we are only interested in the evolution of p in a
subspace a of the entire Liouville space, defined by a
projection superoperator P, which satisfies (P¢)> = P*. In
contrast to Sec. III C, our formulation here is completely basis
independent to emphasize the generality.

Projecting the kinetic equation (B2) onto the subspace a
and its complement b with projector P> = 1 — P¢, we find

—izp®(2) — p*(0) = —iL“p*(z) —iL*’p"(z), (B3)

—izp"(2) = p"(0) = —iL"p"(2) —iL" p"(2). (B4)
Solving the second equation for p”(z),
i
7 — Lbb

and inserting this into the first equation, we can formally write
the exact solution as

p’(z) = (p"(0) — i L™ p“(2)), (BS)

p(z) = et (2)- (B6)

i
7 — L)
This incorporates a frequency-dependent effective Liouvillian,
1
z— Lb

and the frequency-dependent initial condition

L&) = L + L L, (B7)

1
pasr() = p(0) + L ——770"(0). (B8)

To transform Eq. (B6) back to time space, we apply the inverse
Laplace transform:

+OodZ
a0ty = @<
P (0) /_w =

Identifying the subspace a (b) with the subspace of the
quasistationary (decay) modes labelled by ¢ (d), Egs. (B6)—
(B8) yield Egs. (68)—(70) of the main part. To compute the

e p?(2). (B9)
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solution in time space, the integral (B9) has to be solved by
applying the residue theorem. Since L{f(z) can be represented
by a finite matrix in our case, we only have isolated poles
satisfying z,, = L&fi(z,). If the coupling between the subspaces
a and b is absent, these poles are given by the eigenvalues of
L.

Importantly, Eq. (B8) shows that the component of the
initial state in the complementary b subspace has been
transformed into a correction to the initial state in the targeted
a subspace. This is referred to as a slippage of the initial
condition [55]. In general, if the coupling of the b subspace to
the a subspace is nonzero (L% # 0), this initial slip is present
unless the initial state has no projection on the complementary
space, p”(0) = P?p(0) = 0. In our problem, P’ projects onto
density operators p, which are either not factorizable or
for which the reduced state of the SQD is not stationary
(see Appendix C). This has to be compared with the gen-
eralized master equation (24) for the joint qubit-SQD state.
As noted there, when deriving the general kinetic equation
one in fact projects onto a stationary (equilibrium) state of
the reservoirs. One then often assumes (as we do) an initially
stationary reservoir state that factorizes with the SQD-qubit
state. This eliminates the initial slip.

b. Perturbative solution

To next find a perturbative solution—required to obtain the
high-temperature equations (80) and (81) of the main text—we
assume that the eigenvalues of L’ are well separated from
those of L?” in the complex plane as compared to the coupling
mediated by L® and L. Thus, if

1 :=max(|L’|,|L"|) « g := [|IL""| —|L*]|, (B10)

we can neglect the coupling-induced shift of the poles z,, in
the denominator of Eq. (B7) to lowest order in //g. This is the
basis of our perturbative expansion of L& in orders of //g.

For the measurement setup studied in this paper, the
situation is even a bit simpler because the eigenvalues in the
quasistationary subspace satisfy

w:=|L" K g, (B11)

which allows us to insert z = 0 into Eqs. (B7) and (B8). This
means that we carry out a Markovian approximation (i) for the
effective Liouvillian

1
Lo = Li(z = 0) = L — L — L™

e (B12)

and (ii) for the effective initial condition:

1
Pir(0) = p*(0) = L =5 p"(0). (B13)

One can next readily transform back to time space, which
yields the effective time-evolution equation,

pU(6) = —i L% p" (1), (B14)

with the “slipped initial condition” (B13). Equations (B12)—
(B14) reproduce Egs. (79)—(81) of the main text.

We emphasize that this Markov approximation is pro-
foundly different from the Markov approximation discussed
in Appendix A. The latter accounts for memory effects of the
electrodes (kernel frequency dependence), which are already
contained in L and therefore included into the projection
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approach from the start. In the present case, we neglected the
frequency dependence in Eqgs. (B8) and (B7) that is generated
by considering a subsystem of the system described by L. We
address this point further in Appendix B 3 where we discuss
this for our concrete detection problem.

The Markovian approximation (B14) neglects corrections
to the effective Liouvillian of O([max(l,w)]? / »?) and there-
fore the solution of Eq. (B14), p“(t) = e~'Lei’ pd..(0), is limited
to times ¢ < y2/[max(l,®)]’. Moreover, there is a restriction
for Eq. (B14) to be valid for small times: one has to require
t > 1/y basically to ensure that the projection of the density
operator on the decaying subspace, p®(t), becomes negligibly
small and effectively contributes only through the slipped
initial condition Eq. (B13). This becomes clearer from our
complementary time-space derivation below.

2. Derivation in time space
To gain further physical insight into the approximations
made in the above derivation, we rederive the above results
now in time space. We start here from decomposing Eq. (B1)
into its components in the two complementary subspaces a
and b:

p°(t) = —iL*p®(t) — iL“" p"(1), (B15)

pP(t) = —i LY p®(t) — i LP? P (1). (B16)

The second equation is formally solved by

t

pb(t) — efiL””tpb(O) _ i/ dt/efiLbh(tft’)Lbapa(t/)’ (B17)
0

which inserted into the first equation yields the integrodifter-

ential equation

t
I(-)a(t) — —iLaa,()a(t) _ Lab/ dt/e—iLbb(t—t’)Lbapa(t/)
0

— i L9 L pb (). (B18)

This equation incorporates three terms. The first line represents
the internal evolution in subspace a, which reproduces the
full time evolution of p? if subspaces a and b are decoupled
(L = L% = 0). However, if the coupling is nonzero, the
second line accounts for virtual transitions from the subspace
ainto subspace b attime ¢’ < t, followed by a period of internal
evolution in the subspace b (mediated by Liouvillian L*”) and
a final transition back into subspace a again at time ¢. The third
line is related to the initial slip: it accounts for the contribution
to p?(¢) that stems from the initial projection of the density
operator p”(0) on subspace b, combined with a transition into
subspace a at time 7.

To next derive the effective Liouvillian (B12) and initial
condition (B13) from Eq. (B18) for the measurement setup
under study, we make use of the separation of time scales
governing the dynamics: This allows us to neglect the time
evolution in the quasistationary subspace in Eq. (B18), i.e., we
perform a Markov approximation with respect to the memory
induced by the decaying subspace (identifying now a = ¢ and
b =d),

p(t") ~ p?(1). (B19)
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Inserting Eq. (B19) into Eq. (B18) yields

—i L%y

. : e
09(t) = —i <szqf + L9 Ldd qu),oq(t)

— i L9 emiL pd (), (B20)

with the effective Liouvillian

1 ol
qu = [499 _ qu_qu + 0<_,_> (B21)
it L g g

The higher-order terms in Eq. (B21) are due to non-Markovian
corrections Ap?(t') = p4(t") — p4(t) to Eq. (B19). They can
be estimated as follows. Since the exponential in the integral
Eq. (B18) decays on a time scale 1/g, we only need to account
for corrections Ap4(t’) for times ¢’ satisfying r — ¢ < 1/g.
Integrating Eq. (B18), this yields corrections Ap? ~ w/g,l/g.
Multiplied with the order /%/g of the corrections from the
decaying subspace, we obtain the estimate of the higher-order
terms in Eq. (B21) in accordance with the result obtained in
frequency space.

The time-local equation (B20) is not yet fully Markovian in
the sense that it still contains explicitly time-dependent terms
in the time-evolution generator, which therefore becomes
frequency dependent in Laplace space.”* In the long-time limit
t > 1/g, this time dependence drops out. As we now argue,
one can omit the second term in the bracket in Eq. (B20),
while the second line of Eq. (B20) must not be neglected.
One may drop the first term since it gives a correction to
the derivative ~/?/g on a time scale 1/g, i.e., they result in
an accumulated correction Ap?(z) on the order of ~I?/g?,
which can be neglected. This is usually achieved in standard
derivations of master equations by setting ¢ — oo in the
integral in Eq. (B18) [63]. By contrast, the corrections from the
second line of Eq. (B20) are of lower order //g as integrating
Eq. (B20) shows. In many cases, these terms do not appear as
one often assumes p?(0) = 0 from the start. Here these terms
must be kept and the solution of Eq. (B20) can therefore be
approximated as

t
,Oq(t) — giiLelf/ft [qu(o) —i / dt/evL[Lth'que[L‘Mt’pd(o)}

0
12
+0<?).

Again, one can exploit that the exponentials in the second line
of Eq. (B22) vary on a different time scale: While the factor
e~ L is nonzero only on a short time scale ~1/g, the factor
etiLatt’ changes on a much longer time scale max(w,l%/g),
and we may therefore expand el ~ 1 + O(w/g.1%/g%)
in Eq. (B22). In the long-time limit #+ — oo, we can then
approximate the integral well by setting its upper bound ¢ —
oo, resulting in

(B22)

. wl 12
p?(t) = e it p%(0) + 0<?,?>, (B23)

24See also the discussion of microscopic derivations of master
equations in Ref. [63].
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with the slipped initial state

P (0) = p?(0) — quﬁpdm).
We have thus arrived again at Eq. (B12) and (B13), respec-
tively, particularly emphasizing that Eq. (B23) and (B24)
describe the time evolution correctly as long as 1/g <
t < g%/[max(l,w)]’; otherwise, the correction terms to the
effective Liouvillian (B21) can accumulate to a large error in
Eq. (B23). This is also borne out by numerical checks that we
performed.

(B24)

3. Effective Liouvillian for indirect detection

We next apply the above Liouville-space projection tech-
nique to the indirect detection setup of the SQD-qubit
system studied in the Secs. III and IV of the main text.
In Appendix B3a, we first make the connection between
the projections just discussed and the dynamical variables
considered in the main text. After this, we provide in Appendix
B 3b some important intermediate steps in the derivation of
the effective Liouvillian (80). We comment in Appendix B 3 ¢
on the Markov approximation with respect to the memory
induced by the sensor QD on the qubit. Finally, we discuss the
validity of our effective Liouvillian in view of the perturbative
expansion of the kinetic equations in Appendix B4 and
comment on the U = 0 limit of our problem.

a. Definition of projections and representing matrices
of the Liouvillian

To make a connection between the projection p? = P9p
of the SQD-qubit density operator on the quasistationary sub-
space and the dynamical variables introduced in Sec. III C 2,
we exploit the eigenbasis of the Liouvillian Ly [Eq. (37)] with
left and right eigenvectors \7’[‘) and V’;, respectively. In the
following, “="" denotes that we represent a basis-independent
object on the left-hand side by its components on the right-hand
side with respect to the eigenbasis of L. Representing, for
example, the density operator p in this basis, we obtain

1
047!
pir® — pp!

1.0 0.1
PstTy — PstTa

: (B25)

with X7 and X? given by Eq. (55) in the main text. In
contrast to the representation (56) in Sec. III C2, working
in the eigenbasis of L, also fixes a particular basis for the
isospin part, namely the polarization basis which we order
ase_ = (e] + iez)/\/i, e =R/Q,and e, = (e] — iez)/\/i.
The latter vectors are constructed from the right-handed or-
thonormal basis ey,e; = A/A,ande, = ey X e; = 2 x A/ QA.
This yields the three components 7] = el - (¢ = —,0,4)
in Eq. (B25) that make up the isospins " =), t/e,. The
projection of p on the quasistationary and the decaying
subspace are next represented as

ol = iy = <’g’>, (B26)
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(0
p!=Plp = <Xd)

The matrix (L§),, = Vi - Lo VX of the unperturbed
Liouvillian [see Eq. (41)] expressed in terms of its left and right
eigenvectors \7’;, and V’;, respectively, is specified completely
by the two diagonal blocks

0 0
_sraq _
iLy = (0 iaQSaa/)’

ardd _ (VY 0
o = ( 0 (v +ia9)aaw>’

whence the off-diagonal blocks vanish: LI = L3 = 0. Here
and below we use the shorthand notation M, for a 3 x 3
matrix M in the above-mentioned polarization basis. In this
polarization basis, the cross product £ x is diagonal:

(B27)

(B28)

(B29)

—iQ 0 0
x =Y el (2 x ex)leel,=[ 0 0 0
aa! 0 0 +iQ
(B30)

Next, expressing the four blocks of the perturbation A = L —
L in this basis, one finds

A4 — (8 Apfsw), (B31)

A = (8 —k(;aa/>’ (B32)

W= (g g, (TIIE)
L Y S B

The components of the matrix s, are proportional to the
(signed) volume of the parallelepiped spanned by the vectors
€y, ey, and A = A /A,

o [0 410
Sewr =€, - (A X ey) = —| +1 0 -1}, (B35
V2o =1 o

and the remaining factor ¢, is given by the projected isospin-
to-charge conversion vector

1
o = (el - 1) = % 0], (B36)
1

with ¢ given by Eq. (34). Finally, Eq. (B33) incorporates the
transition factor
1
r=papba— K(Ep!t - p3>, (B37)
whose dependence on the SQD parameters we thoroughly
discussed in Sec. III C 3 in the main text.

Equation (B31) together with Eq. (B35) reveals that the
“direct” perturbation of the quasistationary modes for A # 0 is
not diagonal in the unperturbed eigenbasis. This expresses
the fact that the mean-field € = €+ plA is tilted with
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respect to 2. Moreover, since the Liouvillian is not Hermitian,
L # L', the transition matrices are also not simply related by
Hermitian conjugation, i.e., A% # (A9?)f. This means that
transitions between quasistationary and decay modes are not
always possible in both directions (see Fig. 4), in contrast to
Hamiltonian dynamics. In particular, all transitions info the
stationary charge modes (g,c) are forbidden (the first rows of
A%9 and A%9 are zero). This is a consequence of the sum rules
guaranteeing probability and isospin conservation by tunneling
(see Ref. [32]). Physically, the eigenvalue of the stationary
charge mode must stay pinned to zero.

We further find from the above equations [see Eqs. (B10)
and (B11)]:

g =[IL"| —|L“|| ~ v, (B38)
[ = max(|L|,|L"|) ~ &, (B39)
w=|L1 ~ A~ Q. (B40)

Thus the time scales on the quasistationary subspace and the
decaying subspace separate as required by Eq. (B11) and satis-
fied by our assumption A < y. Moreover, the weak-coupling
assumption (B10) is fulfilled in the weak-measurement limit
A K y. For further discussion of the consistency, see also
Appendix B 4.

b. Computation of effective Liouvillian

Exploiting Egs. (B26) and (B14), the effective evolution of
the quasistationary modes can be expressed as

X9(t) = <r'a(zt)> = —iLYX(t) = LI (Tal(t)). (B41)

Consistently accounting for terms up to second order in A in
the high-temperature limit, the effective Liouvillian reads

1 A3
LI = L3 4+ A% — i A9 — A7 + 0(—2>. (B42)
4 14
Inserting Eqs. (B28)—(B34), we obtain

. (0 0
_ 57499
lLeff o (I(x _i(Leff)oux’>’

AT
I, =0(—= x =),
1% T

Ar A’
—— (e + O =5 ).
Y Y

(B45)

(B43)

with
(B44)

(Letf)aer = 102840 + )Lpsltsaa’

The injection term I, of Eq. (B44) is thus negligible in the
high-temperature limit considered here.”> In Eq. (B45) the
first two terms are responsible for the qubit precession with
frequency ~A, while the third term induces the isospin decay

25We checked that when accounting for the leading-order expression
in Eq. (B44) for lower temperatures, one reproduces the stationary
state of Ref. [32] with nonzero stationary isospin .
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with the a rate ~A?/y, which coincides with Eq. (62) in the
main text.

Inserting Eq. (B43) back into Eq. (B41), we obtain for the
total isospin evolution:

T =) fota = ) eol~iLetthowTe (1) = —iLerT(1)

(B46)
with

Legr = (Leff)vta’eaelf = Z (iQa - Va)eeff,aélff,av
a=0,+
(B47)
with €, Ya» and eef o, thus establishing Egs. (80)—(89) in the
main part of the paper.

Finally, the slipped initial state following from Eq. (B24)
reads

1
Xer(0) = (reff,a«»)

1 A
= X9(0) + A —X440) + O =5
Y y?

(B48)

(B49)

1 A?
- ((TO + t])a(o) - %Saa/ (pgttl - psllto)a(o)> +0 <7>
(B50)

with 7/ = e/, - T". Computing T(0) = Y, Tefr o(0)e, from
Eq. (B50), we arrive at Eq. (81) from the main text. The set of
states with zero slip is discussed in detail in Appendix C and
it is shown that the “size” of this set grows with the “distance”
of the sensor from the stationary state. This completes the
derivation of the effective isospin evolution discussed in
Sec. IV A.

¢. Markov approximation relative to the sensor QD

Regarding the discussion of non-Markovian effects, we
have to distinguish between two different memory effects,
namely those arising from the electrodes (imposed on the
qubit-SQD system) and those arising from the sensor quantum
dot (imposed on the qubit only). As explained in Appendix
A 2, we account for the leading non-Markovian effect on the
composite qubit-sensor QD system from the electrodes, which
is induced by the tunnel coupling; these effects are contained in
the effective Liouvillian L in the kinetic equations (26), which
forms the starting point of the above analysis. Their effect is to
modify the coupling of the quasistationary and decay modes
through the coherent backaction terms in the kinetic equation
(26) as explored in Appendix A 2 and Sec. III B 4.

By contrast, the frequency dependence of the effective
Liouvillian L.k for the reduced qubit system, Eq. (B7),
incorporates non-Markovian effects on the qubit due to
memory of the sensor quantum dot after the electrodes were
integrated out (thus effectively of SQD plus electrodes). These
are accounted for by our general Laplace-space approach
given in Appendix B 1 in an exact way relative to Eq. (26).
In principle, these non-Markovian effects can be already
studied based on the solutions of our full kinetic equations
(26). However, the expressions (71) and (72) provide a more
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convenient starting point to gain further insight on an analytical
level.

In the main text, we focused for further illustration on the
high-temperature limit that allows us to make the Markov
approximation (B19) when expanding the effective Liouvillian
(80) to lowest order in A/y. In this limit, SQD-induced
memory effects on the qubit are thus neglected. Moreover, we
neglect O(I'?/T) corrections to the SQD tunneling rates and,
thus, non-Markovian corrections from the electrodes are also
consistently neglected. This is reasonable because if memory
effects of the SQD are not accounted for, then memory effects
from the electrodes should have no effect a fortiori.

4. Validity of perturbation expansion

In this part of the appendix, we collect various remarks on
the validity and the limitations of our perturbation theory.

a. Effective Liouvillian (69)

As stated in Sec. II B, our kinetic equations are applicable as
long as I'/T <« A/T" <« 1. One may now wonder whether it
is permissible to expand the denominator in Eq. (69) in orders
of A/ T and to truncate this expansion. In general, the answer
is no, for the following reason. To lowest order in A /T, the
effective Liouvillian scales as A2/ T'. The coherent backaction
and and the cotunneling terms then yield corrections of order
A%/ T x T’/ T; however, higher-order corrections in A/ T" are
atleast of order A2/ I" x A /T and are therefore not negligible
once we include terms of order A2/ I x I'/ T .2° Therefore even
though we start from the weak-measurement limit, one must
not expand the denominator in Eq. (69) from the start.

However, if we first neglect all I'/T corrections (dissi-
pative and coherent backaction and I'?/ T corrections to the
SQD rates), then one can consistently expand the effective
Liouvillian in A /T. The lowest-order approximation to this is
investigated in Sec. IV and requires that high temperatures so
that the I'/ T corrections are sufficiently small.

b. Kinetic equation (26)

The reader may also wonder whether one should not include
terms of order A? into the kinetic equation (26) since the lowest
order to the effective Liouvillian scales at least quadratically
in A. However, such terms appear only in combination with
additional tunneling processes as the internal interaction L ~
A is treated without approximation in the kinetic equations.
Thus terms including A? must be at least of order 'A%/ T?
and are therefore strongly suppressed in the high-temperature
limit that we consider in this paper. For example, if these terms
appear in A99, they lead to corrections of order 'A%/ T? «
A?/T x T/T since '/ T « 1. They are even less important if
they appear in A9¢, A94, A99_ where they would lead to terms
of order A%/ I'(AT"/T?) when inserted into Eq. (69).

Moreover, one may also wonder whether terms of order
'3/ T? should be included into the kinetic equation (26) since

26We note that we still consider the weak-measurement regime
(A/T <« 1). The validity of our kinetic equations is just limited to
high temperatures implying I'/T < A/ T.
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they can also modify the stochastic backaction. However, in
the weak-coupling, weak-measurement limit considered in
this paper, those result in corrections of even higher-order
A?/T(I'?/T?) « A?/T. Yet, deep in the Coulomb blockade
regime (which is beyond the present scope), these terms
should play an important role since the transition factor r
[Eq. (62)]—which controls the strength of the total backaction
together with c—is exponentially suppressed by virtue of the
effective cancellation of I'?/T and 'A/T terms explained
in Sec. III C3. We expect higher-order corrections to cause
deviations from this exponential suppression of the transition
factor r, resulting in an algebraic scaling ~1/(e — u,)"
but with an exponent of higher than that of cotunneling
broadening, n > 1, in agreement with other theoretical work
(see Sec. VC). We emphasize that the main point of our
work is just to explain physically the cancellation of the
expected leading power law n = 1. A much more elaborate
analysis is needed to find the actual power law (including the
complications of a nonstationary detector with strong local
Coulomb interaction, etc.).

¢. Exact result for U =0

Finally, to further support the cancellation in Eq. (62)
that we found here for large Coulomb interaction U and
perturbatively in I, we computed in a separate calculation
the effective Liouvillian for a noninteracting sensor QD
(U = 0) nonperturbatively in I" but only to leading order in A.
This releases the condition I'/T < A/ T" and can be used to
investigate also the oppositeregime 1/ I’ << I'/ T (< 1). These
results actually confirm the mitigation of the cotunneling-
induced stochastic backaction by the coherent backaction also
in this case. Yet, it remains an interesting future question
to understand the role of the coherent backaction in the
low-temperature, strong qubit-sensor coupling regime when
also the strong interaction U is accounted for.

APPENDIX C: INITIAL STATES WITHOUT SLIP

In this appendix, we characterize the set of initial qubit-
sensor QD density operators with zero initial slip [see Eqgs. (74)
and (81)] in the reduced dynamics of the qubit in the
high-temperature limit. We show that this imposes a strong
condition: Initial states with zero slip form a set of measure
zero, thus making the initial slip a relevant source of errors
in indirect detection unless the qubit-SQD quantum state (not
just the qubit state) is under accurate control. In addition,
increasing the nonstationarity of the sensor reduces these sets
of zero slip. We also formulate the constraint in terms of
relations between the reduced qubit state and the composite
qubit-SQD state and discuss how it relates to the factorizability
of the qubit-SQD state.

Kinematic restrictions. It is most convenient for the follow-
ing considerations to work with the representation of the initial
qubit-SQD state,

1 - .
PO =) P ("o +7"0) ), (€D

n

in terms of the occupation probabilities p”(0) and the charge-
specific isospins 77(0). We recall that for this state to be a
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valid quantum state, p"(0) and ”(0) have be real (for p! = p),
>, p"(0) =1 (for tr p = 1), and the magnitudes

I7"(0) = p"(0) (C2)

have to be restricted (for positivity, p > 0). We note that the
reduced state of the SQD and the qubit,

ps i=1p(0) =3 p"OP", (C3)

1 .
po = tsrp(O) = E(HQ +7(0)- 1), (C4)
are completely specified by the occupation probabilities p”(0)
(in fact by only one) and the Bloch vector 7(0) = 7°(0) +
7'(0), respectively. When p"(0) = DL, the SQD is stationary,
but this does not imply that the qubit-SQD state state p(0) is
factorisable (see below).

Charge-specific isospins. We first investigate the slip based
on the charge-specific isospins t”(0) since these have simple
kinematic constraints, allowing for an easy, complete charac-
terization. The zero-slip condition obtained from Eq. (81),

0=2xx @ +rh, (C5)

is expressed using rescaled isospin vectors r’ = pl7°(0)
and r' = —p%7!(0). For an arbitrary initial state, the two
three-dimensional vectors r® and r' are taken from a six-
dimensional set that is constrained only by the positivity
of p(0): the vectors r’ and r! have to lie within spheres
of different radii given by [r’| < R? := plp°(0) and |r!| <
R' := pSp'(0), respectively. The radii are equal if and only
if the reduced sensor state pg is stationary: The condition
pgpl(O) = psltpO(O) isequivalent to p"(0) = p% (n = 0,1) due
to the normalization condition >, p"(0) = > pk = 1.
From this set of valid initial states let us now construct those
which have zero slip. According to Eq. (C5), this requires
the sum of the vectors r’ and r' to lie on the line defined
by the measurement vector: r’ +r! = xA with any x € R.
For the construction, sketched in Fig. 13, first draw a sphere
with radius R° (blue) and draw the line xA through its origin
(black). For each vector r” in this sphere draw a second sphere
of radius R! centered at its tip (red). The set of vectors r' that
give zero-slip state are just given by the intersection of this
second sphere with the line xA. This is a set of measure zero.

1

(b) R
/—\

RO
0
) - R!
r

~_ | —
A

(a)

T

FIG. 13. Geometric restrictions on the qubit-sensor density op-
erator imposed by requiring zero initial slip. We show a 2D cross
section of the 3D construction described in the text, i.e., the circles
represent spheres and the dotted lines indicate the boundaries of a
cylinder around the line xA.
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Moreover, from the figure it is clear that the construction is
possible only if 1 is inside a cylinder of radius R' with the
line xA as its axis. Whenever r° lies outside this cylinder, it is
not possible at all to construct a zero-slip initial state.

The radii R" are controlled by the initial reduced sensor
state through p"(0) and there are two extreme limits: (i)
stationary state p"(0) = p": R® = R'. In this case for every
r’, one can find an r' giving a zero-slip state. Still, the subset
has measure zero in the total set of possible states. (ii) Integral
charge state p*'(0) = 0,p'°0) = 1: R®! =0, R0 = pl°.
In these two cases, the charge-specific isospin 7%!(0) = 7(0)
coincides with the total isospin, while 7!:°(0) = 0. The slip is
Teir(0) — 7(0) = FA X pslgor(O) /v and can be avoided only if
7%1(0) is collinear to A so that the tip of r®! lies on the line
xA to allow for r'% = 0 as sketched in Fig. 13(a).

As the sensor deviates from the stationary state, the radii R'
and RO differ and the above possibilities for constructing initial
zero-slip states are reduced. Since in any case the zero-slip
states are sets of measure zero, it is clear that most preparation
errors of the sensor QD will lead to an initial slip on the qubit,
i.e., the backaction-induced initial slip generates additional
errors beyond the control over the qubit.

Restriction on the qubit isospin. It is instructive to further
clarify the restrictions that the above imposes on the reduced
qubit state, a density operator completely characterized by
7(0), relative to the composite qubit-sensor state o(0). To this
end, we change the variables to

7(0) = 7°%0) + 71(0), (C6)
31(0) = plp°0) — pSp'(0), (C7)
8(0) = p'(0)7°0) — p°(0)z'(0). (C8)

The conditions imposed by the positivity p(0) on t(0) and
3(0) are not easy to formulate and will be ignored in
the following (note that |t(0)| <1 is only necessary, not
sufficient). Rewriting the zero-slip condition (81) by inserting
%10) = p®1(0)7(0) £ §(0) yields

0 =2 x [8(0) + 5:(0)T(0)]. (€9

Noting that §(0) = 0 corresponds to a factorizable state [see
Eq. (17)] and 64(0) = O to a stationary reduced sensor state
(see above), we have four cases in which there is zero initial
slip: (i) nonfactorizable, nonstationary initial state §(0) # 0,
34(0) # 0. The qubit state and the qubit-SQD correlations must
be fine tuned such that §(0) + 85(0)T(0) = xA or some x € R.

(ii) Nonfactorizable, stationary initial state §(0) # 0,
85t(0) = 0. The qubit state can be arbitrary, but the qubit-SQD
state must have have very special correlations such that
3(0) o A.

(iii) Factorizable, nonstationary initial state §(0) =0,
35(0) # 0. The qubit state must be prepared in a measurement-
basis state T(0) o< A.

(iv) Factorizable, stationary initial state §(0) = 0, 84(0) =
0: no conditions, there is no slip.

Equation (C9) emphasizes that the set of states without
slip does not simply coincide with factorizable initial states
(“uncorrelated states™). It further shows that the more the
sensor deviates from the stationary state, now quantified by
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3(0), the larger the initial slip becomes. This concludes our
discussion of the states with zero slip and, as the previous
analysis showed, the zero-slip states are subsets of measure
zero of the set of possible initial states. The experimental
possibilities to avoid the slip [case (iv)] are discussed in
Secs. IITE and VL

APPENDIX D: RENORMALIZATION-INDUCED
QUBIT PHASE KICKS

In this final appendix, we explain how the coherent backac-
tion appears in the visibility (106) as an additional contribution
that cannot be understood in a semiclassical stochastic picture
discussed in Sec. VA. We show that, loosely speaking,
the coherent backaction induces additional “phase kicks” on
the qubit that partially “undo” the phase kicks induced by
the stochastic backaction that result in decoherence. As a
result, the decoherence is mitigated. We emphasize from the
start that these phase kicks are completely unrelated to the
initial slip: they do not lead to a phase shift of coherent isospin
precession but instead only affect the net qubit decoherence.

Our objective in the following is to merely further illustrate
the physical origin of the coherent backaction by calculations
that are certainly not rigorous. The proper treatment is
achieved by our kinetic equation (26) which is based on the
systematic real-time diagrammatic approach. Still, we believe
the following may be instructive.

We start from the expression (106) for the visibility,

D(t) = t[(|4+)(~| ® Lsp)e ' (|4+) (=] ® psr)e' '], (D1)

assuming the initial qubit-environment state factorizes and H
is given by Eq. (1). We furthermore neglect the spin degree of
freedom for the SQD and thereby also the Coulomb interaction
effect, i.e., the SQD takes two charge states |[0) and |1). As
noted in Sec. V A and Appendix B 4, neither is essential for
the coherent backaction. We next split up the Hamiltonian
H = Hy + Hyr and expand Eq. (D1) in the tunneling Hy of
electrons between the SQD and the reservoir and vice versa.
In O(T") ~ O(H%), the following term contributes (there are
more terms; we just consider a relevant one):

D(t) ~ /dt]dl‘zstl;?[(+|€7iH0(t7t‘)HTe*iH0f1|+>

0<ty,1p<t

®psr(—le'™ T Hye! 2| —)]. (D2)
Importantly, the tunneling process for the ket evolution (4| <«
(+] may happen at a time ¢, different from the time #, for
the tunneling process of the bra evolution (—| — |—). The
coherent evolution in between is responsible for an additional
phase shift. To see this, we assume the SQD to be initially
unoccupied, i.e., psg = |0){(0] ® pg.0, and to end up in a singly
occupied state |1)(1]. We assume again for simplicity £ = 0.
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Evaluating the trace over the electrodes, we get

D) ~ / dndn ) / doft (@) (w)e 20
0<n<n =<t

« [e—i(s+‘g—w)(z,—t2) +e—i(—e+%+w)(tl—t2)]’ (D3)
where the two terms in the bracket relate to the two cases,
t) > 1 and t; <t in Eq. (D2), respectively. It is easy to
show that the terms in the second line arise from SQD-
qubit coherences of the type |1, + )(0, — | and |0, + )(1, — |,
respectively. Finally, the SQD reaches the singly occupied real
state |1)(1], giving rise to the phase shift e=**‘~")_ The latter
is related to the stochastic backaction (since the time ?; is
random), while the former phase shift contains the coherent
backaction as we explain next. For this purpose, we redefine
T =1 — I, assume large ¢, and introduce a small imaginary
part into the exponentials to ensure convergence. Since T can
take nearly all positive values for large ¢, the coherent phase
shift becomes approximately

00 ) .
N/ dt[e—i(£+%—w—i0)r+e—i(—8+%+a}—i0)t]
0

. 1 1
_(_l)(8+)»/2—a)—i0_E—A/Z—w+i0>
9

1 .
~2Im— —iA—

D4
e—w—+i0 0e (D4)

e —wti0
where the last step holds in first order in A. We ignore the
first part, which is independent of A, and insert the second
part into Eq. (D3), which yields a term proportional to the
renormalization function. When taking the time derivative of
Eq. (D3), it reproduces the coherent backaction:

- 1-‘r)L / - Mr .
D ~ (—i)ZTqb,(S TM ) = —ik,

which coincides with the effect of the term 7! = kA x 7°in
the kinetic equation (26).

What our heuristic argument clarifies is why a semiclassical
approach as discussed in Sec. V A is not capable of reproducing
the coherent backaction: this approach crucially relies on the
assumption that the charge state of the SQD is a classical
variable, i.e., n(t) is just a fixed (but random) function of 7.
Thus the transition 0 — 1 happens on both the bra- and the
ket-part of the evolution at the same time #; = f, (while the
time f; is random). In this case, the coherent phase shift just
vanishes. This amounts formally to replacing 1 /x — —imd(x)
and “by hand” dropping the principal value integral term
P(1/x) that contains renormalization effects. In the single-step
Born-Markov approach discussed in Sec. V B, the problem is
to find a proper description of the environmental state that
contains the intermediate coherences |1)(0| and |0)(1|. Our
above nonrigorous derivation of the coherent backaction terms
thus illustrates that virtual fluctuations in nanoscale sensors
can have a real impact on the measurement backaction.

(D5)
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