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We consider the fluctuation-induced interaction of two thin, rodlike particles, or “needles,” immersed in a

two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane

containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and

torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we

utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length

we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of

elementary functions, and we also obtain analytical results for the force and torque between needles of finite

length with separation much greater than their length. Evaluating formulas in our approach numerically for

several needle geometries and surface universality classes, we study the full crossover from small to large values

of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long

needles and with predictions of the small-particle operator expansion, respectively.

DOI: 10.1103/PhysRevE.94.032130

I. INTRODUCTION

Two objects immersed in a near-critical fluid, for example

colloidal particles in a binary liquid mixture near the critical

point of miscibility, experience a long-range, fluctuation-

induced force [1–6]. Changes in the positions of the objects

alter the space available to the critically fluctuating fluid, and

hence its free energy, giving rise to an effective interaction of

the objects. In analogy with the Casimir effect in quantum

electrodynamics [7–10], this is known as the critical or

thermodynamic Casimir interaction.

The critical Casimir interaction displays a high degree of

universality, i.e., is largely independent of microscopic details

[3–6]. It depends only on universal properties of the fluid, the

universality class of the boundary between the fluid and the

immersed particles, and geometrical properties of the particles,

such as their size, shape, and relative position.

Fluctuations of the superfluid order parameter also lead

to critical Casimir forces, and this has been detected in

wetting films of 4He and 3He /4He mixtures [11–15]. Particles

immersed in a solution [16–19] of long, flexible polymer

chains or particles to which a polymer chain is attached [19,20]

experience a similar Casimir interaction due to fluctuations

of the polymers [21]. Shape fluctuations of membranes or

fluid surfaces lead to a Casimir-type interaction of embedded

particles [22–24].

Binary liquid mixtures belong to the Ising universality

class. The surfaces of the immersed particles generally attract

one of the two components of the mixture preferentially,

corresponding to (+ or −) boundary conditions in the Ising

model. A surface prepared to suppress the preference cor-

responds to free-spin boundary conditions [25]. In the ter-

minology of surface critical phenomena, these two surface

universality classes [26] are known as “normal” (+ or −) and

“ordinary” (O).

In studies of critical Casimir interactions, systems with

planar walls and systems with spherical particles have received

the most attention [3,13,27–29]. For nonspherical particles the

Casimir interaction depends on their orientation as well as their

separation; i.e., there is a torque as well as a force. Recently, the

universal scaling form of the Casimir interaction of a prolate

uniaxial ellipsoid and a planar wall, with pairs ++ or +−
of boundary conditions on the two surfaces, was calculated

within mean-field theory by Kondrat et al. [30].

In this paper we derive exact results for the Casimir

interaction of two rodlike particles in a two-dimensional

critical system in the Ising universality class. The following

considerations provide some motivation:

(i) Recent experiments suggest that biological membranes

are tuned close to a critical point of miscibility in two di-

mensions [31]. The possibility of critical Casimir interactions

between inclusions in the membrane has been studied by

Machta et al. [32,33].

(ii) Systems at the critical point are generally invariant not

only under scale transformations, but also under conformal

or angle-preserving coordinate transformations [34]. This has

far-reaching consequences for the Casimir interaction of two

particles, especially in two spatial dimensions [29,35,36].

In general dimension d the region outside two spherical

particles with arbitrary radii and separation can be conformally

mapped onto the region bounded by two concentric spheres

using homogeneous translations, rotations, and dilatations

and the inversion. Burkhardt, Eisenriegler, and Ritschel have

shown [29] that this mapping determines the asymptotic form

of the Casimir interaction for both large and small separation

of the spheres in an arbitrary critical medium, not necessarily

Ising-like, in arbitrary spatial dimension d.

In d = 2 the conformal group is much richer than in general

d. Conformal mappings are generated by analytic functions,

and the doubly connected region outside two particles of

arbitrary shape can be conformally mapped onto the annulus

bounded by two concentric circles or, equivalently, onto the

surface of a cylinder of finite circumference and length.

The Casimir interaction of the particles in an infinite, two-

dimensional, Ising-like critical medium follows from the free

energy of the critical Ising model on the cylindrical surface

[29,34–36], which Cardy [37] has derived in analytic form for

all aspect ratios and for all pairs of boundary conditions +,
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−, and O at the ends of the cylindrical surface. Burkhardt and

Eisenriegler [29] and Machta et al. [32] followed this route

in evaluating the Casimir interaction of two particles with

circular shape. Bimonte et al. [36] have given a general analysis

of asymptotic properties of the Casimir interaction in critical

two-dimensional conformal field theories for two particles of

arbitrary shape, based on the mapping of the portion of the

plane outside the particles onto an annulus.

Being interested in the Casimir torque as well as the force,

we consider anisotropic particles. The rodlike particles in our

study have negligible width compared with their length, and we

model each particle as a segment of a straight line. This shape is

extremely simple and highly anisotropic. Following Ref. [35]

we refer to the particles as “needles” [38]. The approach we

use, which makes use of conformal mappings, is not limited

to these needles but is applicable, in principle, to particles in

two dimensions of arbitrary shape.

In Sec. II and Appendix A we show how the force and

torque between the particles are related to the stress tensor

[34], which for our purpose is the quantity most convenient to

work with [29,35,36].

In Sec. III we calculate the critical Casimir force between

a semi-infinite needle and an infinite needle and between two

semi-infinite needles, with arbitrary relative position. These

are instructive cases to begin with since the calculations can

be carried out analytically, without special functions. The key

step is to generate by a conformal mapping z(w) the complex

z plane with the two embedded needles from the upper half

w plane with the corresponding needles on the real axis. The

approach is not limited to needles with homogeneous boundary

conditions. In addition to the homogeneous case, we consider

needles whose two sides prefer different components of the

mixture and also a semi-infinite needle in the presence of a

piecewise homogeneous boundary corresponding to “chemical

steps” [39–41].

In Sec. IV we discuss the more complicated Schwarz-

Christoffel transformation required for two needles of finite

length. It generates the complex z plane, with an embedded

needle between points z1 and z2 and a second needle between

points z3 and z4, from an annulus, with circular needles on the

outer and inner boundaries.

In Sec. V detailed results for the Casimir force and torque

between needles of finite length are presented for several

configurations of the needles. The results are consistent

with predictions of Vasilyev et al. [35], who have studied

the Casimir interaction of the needles with Monte Carlo

simulations and calculated them in certain symmetric cases

with conformal invariance methods [42], but without the

generality of the approach considered below. The results of

Sec. V are also asymptotically consistent with the predictions

for infinite or semi-infinite needles derived in Sec. III. Since

the torque diverges for needles of infinite length, checking

its asymptotic behavior is more subtle and is addressed in

Appendix C.

For large separation of the needles in comparison with

their lengths [43], the numerical results of Sec. V reproduce

the predictions of the “small-particle operator expansion”

(SPOE). This expansion, which is reviewed in Appendix B,

has proved to be extremely useful in studies of the critical

Casimir interaction and is similar in spirit to the operator

product expansion [44] in field theory. Large needle separation

corresponds to a small ratio of inner to outer radius of the

annulus, and the corresponding expansions in Sec. IV and

Appendix B allow us to check the agreement with the SPOE

analytically.

The final section of the paper, Sec. VI, contains a summary

and concluding remarks.

II. FORCE, TORQUE, AND THE STRESS TENSOR

In this section we consider two needles I and II in the

z = rx + iry plane and present the formalism for calculating

the force (fx,fy) and the torque � acting on needle I due to

needle II. The force and torque follow from the changes δF of

the interaction free energy [45] on infinitesimally translating

and rotating needle I with needle II kept fixed. As reviewed

in Appendix A, these changes can be expressed in terms of

the thermal averages 〈Tkl(rx,ry)〉 of the Cartesian [46] stress

tensor field or its complex [34] counterpart 〈T (z)〉 for the

given needle configuration. In subsequent sections the stress

tensor and the corresponding force and torque are calculated

for several two-needle geometries of interest. In each case

〈T (z)〉 is obtained through a conformal mapping z(w) of a

simpler geometry in the w plane, for which 〈T (w)〉 is known,

onto the desired geometry in the z plane, using the fundamental

transformation property [34]

〈T (z)〉 =
1

[z′(w)]2

[

〈T (w)〉 −
1

24
S(w)

]

. (2.1)

Here S(w) is the Schwarzian derivative

S(w) =
z′′′(w)z′(w) − (3/2)[z′′(w)]2

[z′(w)]2

≡
d2

dw2
ln

dz

dw
−

1

2

(

d

dw
ln

dz

dw

)2

, (2.2)

and the primes denote derivatives.

According to Eq. (A11) the force components are given by

(fx, fy)/(kBT ) = −(Im, Re)τ, (2.3)

where

τ =
1

π

∫

CI

dz〈T (z)〉 =
1

π

∫

C

dwz′(w)〈T (z)〉. (2.4)

The integration path CI in the z plane encloses needle I in

a clockwise fashion, leaving needle II outside, and C is the

corresponding path in the w plane, which maps onto CI under

the conformal transformation z(w). With the help of Eq. (2.1),

τ can be expressed as

τ =
1

π

∫

C

dw
1

z′(w)

[

〈T (w)〉 −
1

24
S(w)

]

≡ τ (T ) + τ (S).

(2.5)

The torque � on a needle I with fixed length, extending

from z1 to z2, and forming an angle �I ≡ �12 = arg(z1 − z2)

with the x axis is given by

� = −(∂/∂�I)δF, (2.6)

where the derivative is taken for an infinitesimal rotation of

needle I about its midpoint with the midpoint zI = 1
2

(z1 + z2)
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fixed. According to Eqs. (2.6) and (A12), the torque may be

written as

� = −kBT Reθ, (2.7)

where

θ =
1

π

∫

CI

dz〈T (z)〉(z − zI) (2.8)

and the integration path CI is the same as in Eq. (2.4).

To express � in terms of 〈T (w)〉 and z(w), we rewrite the

integral in Eq. (2.8) using Eq. (2.1) and the relation

z − zℓ =
∫ w

wℓ

dw̃(dz/dw̃) ≡ ζℓ(w); ℓ = 1,2, (2.9)

where wℓ is the point in the w plane which maps onto needle

end point zℓ. Together with (2.7), this yields

� = −kBT Re(θ (T ) + θ (S)), (2.10)

where

(

θ (T )

θ (S)

)

=
1

2π

∫

C

dw
1

dz/dw

(

〈T (w)〉
− 1

24
S(w)

)

[ζ1(w) + ζ2(w)].

(2.11)

Note that the contributions τ (S) in Eq. (2.5) and θ (S) in

Eq. (2.11) which involve the Schwarzian derivative are purely

geometrical and do not depend on the surface universality

classes of the needles.

III. INTERACTIONS OF INFINITE

AND SEMI-INFINITE NEEDLES

A. Force between a semi-infinite and an infinite needle

In this and subsequent sections we use the notation z =
rx + iry and w = ρu + iρv for the complex variables z and w

and their real and imaginary parts.

The conformal transformation z(w), where

z′(w) = Aeiαw−α/π−1(w − 1), (3.1)

z(w) = πAeiαw−α/π

(

w

π − α
+

1

α

)

, (3.2)

A is a positive real constant, and 0 < α < π , considered in

Sec. 12.1 of Kober [47], maps the upper half w plane, with

semi-infinite needles along the positive and negative u axes,

onto the upper half z plane with two transformed needles.

Needle II, the image of the negative u axis, is infinitely long

and corresponds to the entire x axis. Needle I, the image of the

positive u axis, is semi-infinite and extends from the point

z(1) =
π2

α(π − α)
Aeiα (3.3)

to ∞, forming an angle α with the x axis.

The integrand in expressions (2.3)–(2.5) for the Casimir

force follows from Eqs. (2.2) and (3.1) and the corresponding

stress tensor [48,49],

〈T (w)〉 =
t̃

w2
=
(

0,0, 1
2
, 1

16

)

w2
, (3.4)

for (OO, + +, + −,O+) boundary conditions on the two

needles and is given by

z′(w) 〈T (z)〉 = −
e−iα

48π2A

wα/π−1

(w − 1)3
[α(2π − α)w2

− 2(2π − α)(π + α)w + π2

−α2 − 48π2 t̃(w − 1)2]. (3.5)

In Eq. (2.4) integrating clockwise along the edges of needle I

in the z plane (path CI) corresponds to integrating along the u

axis from w = 0 to +∞ in the w plane, passing above the pole

at w = 1 (path C). Combining Eqs. (2.4) and (3.5), evaluating

the integral, and making use of Eqs. (2.3) and (3.3), we obtain

fx = 0, as expected since needle II is infinite, and [50]

τ = −
fy

kBT
=

1

96 ry(1)

(2π − α)(π + α) − 96π2 t̃

α(π − α)
. (3.6)

Here ry(1) = Im[z(1)] is the distance of the tip of needle

I from needle II, and we have used the relation ry(1) =
π2A(sin α)/[α(π − α)], which follows from Eq. (3.3).

As expected, fy in Eq. (3.6) is an even function of the

deviation γ = α − 1
2
π from perpendicular orientation of the

needles and diverges in the limit γ → ± 1
2
π , corresponding to

parallel needles. From the values of t̃ in Eq.(3.4), it follows

that the force between the needles is attractive for OO and ++
boundaries and repulsive for +− and O+ boundaries, with the

strongest force in the +− case.

B. Force between two semi-infinite needles

The conformal transformation w(z), where

z′(w) = Beiαw−α/π−1(w − 1)(w + b), (3.7)

FIG. 1. The configuration of the semi-infinite needles I [with end

point z(1)] and II (with end point 0) in the full z plane, shown on the

left, is generated by the conformal mapping (3.8) from the upper half

w plane with needles I and II on the positive and negative real axis,

respectively, shown on the right. The two edges of needles I and II in

the z plane and their preimages in the upper half w plane are denoted

by i, ii and iv, v, respectively. The neighborhoods of z = ∞ denoted

by iii and vi correspond to the neighborhoods of w = ∞ and w = 0,

respectively, in the upper half w plane. The integration contour CI

enclosing needle I and its preimage C play a role in the calculation of

the force and torque, as discussed in Secs. II and III.
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z(w) = πB

[

eiαw−α/π+1

(

w

2π − α
+

b − 1

π − α
+

b

αw

)

−b−α/π+1

(

b

2π − α
−

b − 1

π − α
+

1

α

)]

, (3.8)

where B and b are positive real constants and 0 < α < π ,

considered in Sec. 12.3 of Kober [47] and shown schematically

in Fig. 1, maps the upper half w plane, with semi-infinite

needles along the positive and negative u axes, onto the full

z plane with two embedded semi-infinite needles. Needle II,

the image of the negative u axis, coincides with the positive x

axis. Needle I, the image of the positive u axis, extends from

the point

z(1) = −Bπ2 [α − b(2π − α)]eiα + b−α/π+1(2π − α − bα)

α(π − α)(2π − α)

(3.9)

to ∞, forming an angle α with needle II.

The integrand in expressions (2.3)–(2.5) for the Casimir force follows from Eqs. (2.2), (3.7), and (3.4) and is given by

z′(w)〈T (z)〉 =
e−iα

48π2B

wα/π−1

(w − 1)3(w + b)3
{(3π − α)(π − α)w4 + 2(1 − b)α(3π − α)w3

+[−α(2π − α) + 2b(5π2 + 4πα − 2α2) − b2α(2π − α)]w2

−2b(1 − b)(2π − α)(π + α)w − b2(π2 − α2) + 48π2 t̃(w − 1)2(w + b)2}. (3.10)

Integrating along path C in Eq. (2.4) again amounts to integrating along the u axis from w = 0 to +∞ in the w plane, passing

above the pole at w = 1. Combining Eqs. (2.4) and (3.10), evaluating the integral, and making use of Eq. (2.3), we obtain [50]

τ = −
fy + ifx

kBT
=

1

96π2B(1 + b)3 sin α
{[α(3π − α) + 2(3π − α)(π + α)b + (2π − α)(π + α)b2 − 96π2(1 + b)2 t̃]

+ e−iαbα/π−1[(2π − α)(π + α) + 2(3π − α)(π + α)b + α(3π − α)b2 − 96π2(1 + b)2 t̃]}, (3.11)

where the parameters B and b are related to the end point

rx(1),ry(1) of needle I by Eq. (3.9).

Since needle II corresponds to the positive x axis, one

expects to recover the results of the preceding section, in

which needle II is infinite, in the limit rx(1) → +∞ with

ry(1) and α fixed. According to Eq. (3.9) this limit is achieved

on substituting B = A/b in the equation and then taking the

limit b → ∞ with A fixed. In this limit the derivative (3.7)

reduces to Eq. (3.1), the integrand (3.10) reduces to (3.5), and

the Casimir force (3.11) reduces to (3.6).

C. Needles with nonuniform boundary conditions

All of the results of Sec. III B are based on the stress tensor

〈T (w)〉 of Eq. (3.4) for boundary conditions that change only

at w = 0 and are uniform along the positive and the negative

u axis, which are the preimages of the two edges of needles I

and II, respectively (see Fig. 1). Thus, the needles I and II of

Sec. III B are allowed to have different boundary conditions,

but each needle has the same boundary condition along both of

its edges. Beginning instead with the stress tensor 〈T (w)〉 =
t̃/(w − 1)2 for boundary conditions that change only at w = 1

(see again Fig. 1) enables us to study the case in which needle

I has different universality classes along its two edges while II

has the same boundary condition on both edges.

In Appendix D we derive 〈T (w)〉 for an arbitrary number

of changes between surface universality classes + and − at

arbitrary points on the u axis. Using this result, we evaluate

the interaction between two semi-infinite needles both with

different edges, and, on using the transformation z(w) of

Sec. III A, the interaction of a semi-infinite needle and an

infinite boundary line with “chemical steps” [39].

IV. INTERACTIONS OF NEEDLES OF FINITE LENGTH

In this section the approach for infinite and semi-infinite

needles is extended to needles of finite length. The region

outside two finite needles, which is doubly connected, is

generated from an annulus bounded by two concentric circles,

for which the thermal average of the stress tensor is known.

The mapping is illustrated schematically in Fig. 2.

FIG. 2. The configuration of two finite needles in the full z plane,

shown on the left, is generated by the conformal mapping with

derivative (4.2) from the annulus h < |w| < 1 shown on the right.

The labels 1, 2 and 3, 4 denote the end points z1, z2 and z3, z4 of

needles I and II in the z plane, respectively, and their preimages w1,

w2 and w3, w4. The edges of needles I and II in the z plane and their

preimages in the w plane are denoted by i, ii and iii, iv, respectively.

The point w = c ≡ Ch1/2 in the annulus labeled by v is mapped onto

z = ∞ by the transformation. The integration contour CI enclosing

needle I and its preimage C as well as the concentric circle Cc passing

through the point w = c play a role in the calculation of the force and

torque, as discussed in Secs. II and IV and Appendix B 1 a.
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A. Two needles of finite length

1. Conformal mapping

An arbitrary configuration of two non-overlapping needles

I and II with finite lengths DI and DII in the z plane can be

generated by a conformal transformation z(w) of the Schwarz-

Christoffel type, which maps the interior of the annulus h <

|w| < 1 in the w ≡ |w|eiϕ plane onto the region outside the

two needles in the z plane. As illustrated in Fig. 2, the outer and

inner boundary circles of the annulus map onto needles I and

II, respectively, and the points w1 = eiϕ1 ,w2 = eiϕ2 and w3 =
heiϕ3 ,w4 = heiϕ4 map onto the end points z1, z2 and z3, z4

of the needles. The corresponding mapping is a special case

of the mapping onto the region outside two nonoverlapping

polygons derived by Akhiezer in 1928 and given at the end of

Sec. 48 of Ref. [51]. In the special case in which the polygons

reduce to needles, the mapping z(w) has the derivative

z′(w) =
µ

w2

∏4
ℓ=1 ϑ1[(2πi)−1 ln(w/wℓ)]

ϑ2
1 [(2πi)−1 ln(w/c)] ϑ2

1 [(2πi)−1 ln(wc)]
, (4.1)

in terms of the elliptic theta functions ϑ1 with the nome h and constants µ and c defined in Ref. [51].

Substituting c = Ch1/2, µ = (w1w2w3w4)−1/2A in Eq. (4.1), and using the expression for ϑ1 in Table IX of [51], we obtain

the useful product representation

z′(w) =
A

w2

∞
∏

k=1

∏4
ℓ=1(1 − h2k−2w/wℓ)(1 − h2kwℓ/w)

(1 − h2k−5/2w/C)2(1 − h2k+1/2C/w)2(1 − h2k−3/2wC)2[1 − h2k−1/2/(wC)]2
. (4.2)

We will see that h ≪ 1 for needles short in comparison with their separation, and in this regime the representation (4.2) is

especially convenient [52].

In the mapping with derivative (4.2), shown schematically in Fig. 2, the complex constant A in Eq. (4.2) corresponds to a

homogeneous rotation and dilatation, and the positive real constant C, with h1/2 < C < h−1/2, characterizes the value Ch1/2 of

w, which is mapped to z = ∞. The segments i, ii and iii, iv of the outer and inner boundary circles in Fig. 2, which are separated

by w1, w2 and w3, w4, respectively, map onto the two edges of needles I and II in the z plane. This follows from the changes dz

corresponding to displacements dw = d(eiϕ) and dw = hd(eiϕ) along the outer and inner boundaries of the annulus, for which

Eq. (4.2) implies

dz =
iA

h
C2e−i(ϕ3+ϕ4) G(ϕ; ϕ1,ϕ2)P(ϕ; ϕ1,ϕ2; ϕ3,ϕ4; C; h)dϕ (4.3)

and

dz =
iA

h
G(ϕ; ϕ3,ϕ4)P(ϕ; ϕ3,ϕ4; ϕ1,ϕ2; C−1; h)dϕ, (4.4)

respectively. Here

G(ϕ; ϕJ ,ϕK ) = e−iϕ(1 − ei(ϕ−ϕJ ))(1 − ei(ϕ−ϕK ))

= −4e−i(ϕJ +ϕK )/2 sin
ϕ − ϕJ

2
sin

ϕ − ϕK

2
(4.5)

and

P(ϕ; ϕ1,ϕ2; ϕ3,ϕ4; C; h) ≡
∞
∏

k=1

∏

n=1,2 |1 − h2kei(ϕ−ϕn)|2
∏

m=3,4 |1 − h2k−1ei(ϕ−ϕm)|2

|1 − h2k−1/2C−1eiϕ |4|1 − h2k−3/2Ceiϕ|4
, (4.6)

which is always positive.

As ϕ varies, the argument of dz in Eq. (4.3) stays constant

except at ϕ = ϕ1 and ϕ = ϕ2 where, due to the factor

G(ϕ; ϕ1,ϕ2), it changes by π . This corresponds to constant

slopes along the two edges of needle I with end points z1 and

z2. Analogous results for needle II follow from Eq. (4.4).

Moreover, moving counterclockwise inside the annulus

close to the outer and inner boundary circle corresponds to

encircling needle I clockwise and needle II counterclockwise,

respectively, in the z plane (see Fig. 2). This is most easily

verified near the needle tips zℓ, where, due to Eq. (4.2),

dz ≡ z′(w)dw = const × (w − wℓ)dw, since w − wℓ turns

180◦ clockwise and counterclockwise, respectively, on passing

point wℓ on the outer and inner boundary.

Without loss of generality and for later convenience we

assume

−π < ϕℓ � π, ℓ = 1,2,3,4, (4.7)

for the arguments of the four preimages wℓ of the needle

ends.

The mapping z = z(w) is required to be single valued,

so that the displacement z(wa) − z(wb) =
∫ wa

wb
(dz/dw)dw for

any two points wa and wb in the annulus is independent of

the integration path. For wa = wb the integral must vanish,

even if the path encloses the inner boundary circle or the

singularity at w = Ch1/2. To ensure this, we require that the
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integrals

∫ ϕ=π

ϕ=−π

(

dz

dw
dw

)

w=eiϕ

= 0,

∫ ϕ=π

ϕ=−π

(

dz

dw
dw

)

w=heiϕ

= 0,

(4.8)

around the outer and inner boundary circles vanish. On

inserting (4.3)–(4.6) in Eq. (4.8) and discarding ϕ-independent

complex factors, the conditions (4.8) imply the vanishing of

two real functions of the six real parameters ϕ1, . . . ,ϕ4,C,h.

This leaves four independent parameters (apart from the

complex constant A), consistent with the four degrees of

freedom needed to specify (apart from homogeneous transla-

tions, rotations, and dilatations) a configuration of two needles,

for example, the two lengths and the two angles the needles

form with the vector between their midpoints. According to

Eqs. (4.3) and (4.4), the second of the conditions (4.8) follows

from the first on exchanging the pairs ϕ1,ϕ2 and ϕ3,ϕ4 and

replacing C with C−1. This leads from one allowed parameter

set to another. Explicit expressions for small h are given in

Eqs. (4.16) below.

In conformity with above remarks, we use the notation

z1 − z2 = z12 = |z12|ei�12 ≡ DIe
i�I ,

z3 − z4 = z34 = |z34|ei�34 ≡ DIIe
i�II , (4.9)

(z1 + z2)/2 = zI, (z3 + z4)/2 = zII,

and

zI − zII = zI,II (4.10)

for the needle vectors, the positions of their midpoints, and

their separation vector.

The needle vectors z12 and z34 follow from the first and

second integrals in Eq. (4.8) on replacing the lower and

upper limits −π and π with ϕ2 and ϕ1 and with ϕ4 and ϕ3,

respectively. This yields

z12 = e−i(ϕ3+ϕ4)(iA/h)CN (ϕ1,ϕ2; ϕ3,ϕ4; C; h),

z34 = (iA/h)CN (ϕ3,ϕ4; ϕ1,ϕ2; C−1; h), (4.11)

where, on using Eqs. (4.5) and (4.6),

N (ϕ1,ϕ2; ϕ3,ϕ4; C; h)

= e−i(ϕ1+ϕ2)/2sgn(ϕ1 − ϕ2)P (ϕ1,ϕ2; ϕ3,ϕ4; C; h). (4.12)

Here

P (ϕ1,ϕ2; ϕ3,ϕ4; C; h)

= 4C

∣

∣

∣

∣

∫ ϕ1

ϕ2

dϕ sin
ϕ − ϕ1

2

× sin
ϕ − ϕ2

2
P(ϕ; ϕ1,ϕ2; ϕ3,ϕ4; C; h)

∣

∣

∣

∣

, (4.13)

where P is given in Eq. (4.6).

For the angle enclosed by the two needles, Eqs. (4.11)–

(4.13) imply the simple relation

ei(�12−�34) = e−i(ϕ1+ϕ2+ϕ3+ϕ4)/2 sgn(ϕ1 − ϕ2) sgn(ϕ3 − ϕ4).

(4.14)

Note that in the sector (4.7) the complex numbers

e−i(ϕ1+ϕ2)/2 and e−i(ϕ3+ϕ4)/2 and the signs of ϕ1 − ϕ2 and

ϕ3 − ϕ4 are uniquely determined by w1,w2 and by w3,w4,

respectively.

For the ratio of needle lengths, Eqs. (4.11)–(4.13) yield

DI/DII ≡ |z12|/|z34|
= P (ϕ1,ϕ2; ϕ3,ϕ4; C; h)/P (ϕ3,ϕ4; ϕ1,ϕ2; C−1; h),

(4.15)

so that exchanging the pairs ϕ1,ϕ2 and ϕ3,ϕ4 and replac-

ing C with C−1 changes DI/DII to its inverse. For the

special parameter sets C = 1 with either ϕ3 = ϕ1, ϕ4 =
ϕ2 or ϕ3 = −ϕ1, ϕ4 = −ϕ2, the two needles have equal

lengths |z12| = |z34|. For the second set this follows from

Eq. (4.6), which implies P(ϕ; ϕ1,ϕ2; −ϕ1,−ϕ2; C; h) =
P(−ϕ; −ϕ1,−ϕ2; ϕ1,ϕ2; C; h), yielding P (ϕ1,ϕ2; −ϕ1,−ϕ2;

1; h) = P (−ϕ1,−ϕ2; ϕ1,ϕ2; 1; h).

We mention another, rather obvious, property of

the transformation (4.2): Changing the parameters from

(ϕ1,ϕ2; ϕ3,ϕ4; C; h) to (−ϕ1,−ϕ2; −ϕ3,−ϕ4; C; h), i.e., chang-

ing all four wℓ to w⋆
ℓ , leads from one single-valued mapping

to another, in which the needle configuration is changed from

(z12,z34; zI,II) to (z⋆
12,z

⋆
34; z⋆

I,II), assuming A is real. Here and

below an asterisk denotes complex conjugation.

Except for the enclosed angle it is, in general, not obvious

how to choose the parameters in the transformation (4.2) to

generate a given configuration of the two needles. Here we list

some simple classes (A)–(E) of needle configurations which

require only a parameter search in a reduced subspace. We

choose the vector between the needle centers to be parallel to

the real axis, so that zI,II = |zI,II|, with needle I to the right of

needle II, and refer to the ratios |z12|/|zI,II| and |z34|/|zI,II| as

the “reduced needle lengths.”

(A) Symmetric-perpendicular configurations of two nee-

dles of arbitrary reduced lengths with the symmetry of the

letter T, corresponding to Fig. 3(A). To be specific, we

consider the needle vectors z12 = i|z12| and z34 = −|z34|.
These configurations can be generated from parameters in

the subspace (ϕ1,ϕ2,ϕ3,ϕ4) = (−|ϕ1|,|ϕ1|,0,π ), where w2 =
w⋆

1, w3 = h,w4 = −h. The reason is that on choosing A real,

the integrals over (4.2) from w = w2 to w = w3 and from w =
w1 to w = w3 (and likewise those from w = w2 to w = w4 and

from w = w1 to w = w4) are complex conjugates, implying

the properties z2 − z3 = (z1 − z3)⋆ and z2 − z4 = (z1 − z4)⋆.

Since the expression multiplying dϕ in Eq. (4.4) is an odd

function of ϕ, the integral in Eq. (4.8) around the inner circle

vanishes for all values of ϕ1, C, and h. The requirement that

the integral over the outer circle vanish implies a relation

ϕ1 = ψ(C,h), leaving C and h free to generate given values for

the two reduced needle lengths. Note, finally, that the general

enclosed angle relation (4.14) is satisfied, since both of its

sides equal −i in the above subspace of parameters in the

annulus and for the needle configuration in which ei�12 = i,

ei�34 = −1.

(B) Symmetric-parallel configurations of two needles with

arbitrary reduced lengths perpendicular to the vector between

their centers, corresponding to Fig. 3(B). To be specific,

we choose z12 = i|z12| and z34 = i|z34|, so that the needles

are parallel to the imaginary axis. These configurations are
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(A)

(C) (D) (D')

(B)

FIG. 3. Simple needle configurations described in Sec. IV A 1, for

which the six mapping parameters C, h, ϕ1,..., ϕ4 of the conformal

mapping are restricted to subspaces of lower dimension. The labels

1, 2 and 3, 4 denote the end points z1, z2 and z3, z4 of needles I and II,

respectively. Configurations (A)–(D) are oriented as in Sec. IV A 1,

with the line from the midpoint zII of needle II to the midpoint zI

of needle I parallel to the x or horizontal axis. Configuration (D′)

is the same as (D), apart from a rotation to orient the needles along

the x axis. Our results for the force and torque in configurations (A),

(B), (C), and (D′), as functions of the needle lengths DI, DII, D, the

minimum separation c, the angle α between the needles, and the

distances W and V , are shown in Figs. 4–8.

generated by (ϕ1,ϕ2,ϕ3,ϕ4) = (−|ϕ1|,|ϕ1|, − |ϕ3|,|ϕ3|), i.e.,

by w2 = w⋆
1, w4 = w⋆

3, since, as in case (A), for real values

of the parameter A there is reflection symmetry about the real

axis, and the integrals over (4.2) from w = w2 to w = w3

and from w = w1 to w = w4 (and likewise those from w =
w2 to w = w4 and from w = w1 to w = w3) are complex

conjugates, implying the properties z2 − z3 = (z1 − z4)⋆ and

z2 − z4 = (z1 − z3)⋆. The vanishing of the two integrals (4.8)

implies relations ϕ1 = χ (C,h) and ϕ3 = ω(C,h), and the two

parameters C and h can be adjusted to generate the two reduced

needle lengths. The enclosed angle relation (4.14) is satisfied,

with both sides equal to 1.

(C) Configurations of two needles which are mirror sym-

metric about the imaginary axis, corresponding to Fig. 3(C).

Here z12 = |z12|ei�12 , z34 = |z12|ei(π−�12) = −z⋆
12. The nee-

dles have the same arbitrary reduced length, and with no

loss of generality the angle α ≡ π − 2�12 between them

can be restricted to values between 0 and π .

(D) Nonsymmetric parallel needles of equal length, cor-

responding to Fig. 3(D). Here z12 = |z12|ei�12 = −z34 (see

[53] for an alternate representation), where the angle �12 is

arbitrary [54].

The needle configurations (C) and (D) are generated by

C = 1 in both cases and by ϕ3 = ϕ1, ϕ4 = ϕ2 in case (C)

and ϕ3 = −ϕ1, ϕ4 = −ϕ2 in case (D). In both subspaces the

lengths |z12|, |z34| of the two needles are equal for arbitrary

values of the three parameters ϕ1, ϕ2, and h, and the two

conditions in Eq. (4.8) reduce to a single condition [see the

remarks below Eqs. (4.15) and (4.8), respectively]. This leaves

two free parameters, which can be adjusted to generate the

given common reduced length of the needles and the angle

�12 needle I forms with the distance vector zI,II between the

needle midpoints. In case (C) the enclosed angle relation (4.14)

predicts e2i�12 = −e−i(ϕ1+ϕ2), and in case (D) it is satisfied

since both sides equal −1.

Typical configurations from classes (A)–(D) are shown in

Fig. 3. Classes (B), (C), and (D) encompass two particularly

simple needle configurations for which the conformal mapping

can be found in the literature.

(i) Collinear needles of equal length with �12 = 0 and

�34 = π are generated by (w1, w2, w3, w4) = (1,−1, h,−h)

and C = 1, which is a special case of both (C) and (D). In this

case the two conditions (4.8) are satisfied, since both integrands

(4.3) and (4.4) are odd functions of ϕ. The reduced needle

length is determined by the parameter h. The corresponding

conformal transformation z(w) is discussed in Refs. [47,51].

(ii) Symmetric-parallel needles of equal length with �12 =
�34 = π/2, i.e., a configuration with the symmetry of the letter

H: This needle geometry is generated by (ϕ1, ϕ2, ϕ3, ϕ4) =
(−|ϕ1|, |ϕ1|,−|ϕ1|, |ϕ1|) and C = 1 and is a special case of

(B), (C), and (D) [53]. The two parameters |ϕ1| and h are cho-

sen to satisfy the two identical conditions (4.8) and to generate

a given reduced needle length. The conformal transformation

leading to this needle configuration is considered in some detail

in Refs. [47,51].

(E) Widely separated needles. Needles with lengths

|z12|, |z34| much smaller than their separation |zI,II| are gen-

erated by Eq. (4.2) on choosing C of order 1 and h ≪ 1.

While detailed results for the mapping in cases (A)–(D) for

needles of arbitrary length can only be obtained numerically

(see Sec. V), for widely separated needles analytic results

may be derived by expanding in terms of the small parameter

h1/2. Using the two conditions (4.8) to express ϕ2 and ϕ4

in terms of the four free parameters ϕ1, ϕ3, C, and h leads

to

ϕ2 = ϕ1 − π sgn(ϕ1 − ϕ2) + G(ϕ1; ϕ3; C; h), ϕ4 = ϕ3 − π sgn(ϕ3 − ϕ4) + G(ϕ3; ϕ1; C−1; h), (4.16)

where

G(ϕ1; ϕ3; C; h) = 4h1/2C sin ϕ1 + 4hC2 sin(2ϕ1) − 4h3/2
{

1
3
C3(7 − 16 cos2 ϕ1) sin ϕ1 + C−1[2 sin ϕ3 cos(ϕ1 − ϕ3) − sin ϕ1]

}

,

(4.17)

apart from terms of order h2. Equations (4.16) reflect the symmetry mentioned below Eq. (4.8) and are consistent with our

assumption (4.7). The dependence of the needle configuration on the four free parameters is given by

z12

zI,II

= R(ϕ1, ϕ3, C, h),
z34

zI,II

= −R(ϕ3, ϕ1, C
−1, h)⋆, (4.18)
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where

R(ϕ1, ϕ3, C, h) = 4Ch1/2e−iϕ1{1 − 2ih1/2C sin ϕ1 − h[C−2(1 + 2e2iϕ3 ) + C2] + O(h3/2)}. (4.19)

The symmetry embodied in Eqs. (4.18), which we have checked within the h expansion, is expected to hold for arbitrary h. Starting

from a set (ϕ1,ϕ2; ϕ3,ϕ4; C,h) of six parameters obeying the two conditions (4.8) and replacing it with (ϕ3,ϕ4; ϕ1,ϕ2; C−1,h)

corresponds to reflecting the two needle configuration about the symmetry axis of the needle midpoints, i.e., about the imaginary

axis of the z plane if we choose zI = |zI| and zII = −|zI| by adjusting A appropriately. This is consistent with the above discussion

of the reflection-invariant needle configuration (C), for which C = 1.

For the ratio of needle vectors, Eqs. (4.18) and (4.19) imply

z12

z34

= C2[1 + 2h(C2 cos2 ϕ1 − C−2 cos2 ϕ3)] exp
(

−i
{

ϕ1 + ϕ3 + π + 1
2
[G(ϕ1; ϕ3; C; h) + G(ϕ3; ϕ1; C−1; h)]

})

+ O(h3/2),

(4.20)

where the phase factor and modulus are consistent with the enclosed angle relation (4.14) and the ratio of needle lengths (4.15),

respectively. We also note the relation

zI,II = A h−3/2Ce−2iϕ3{1 + 2h1/2C−1(−eiϕ3 + e−iϕ3 ) + h[C−2(2e2iϕ3 − 3 + 4e−2iϕ3 ) + C2(1 + 2e−2iϕ1 )] + O(h3/2)}, (4.21)

which determines the value of A needed to generate a given zI,II = |zI,II|.

2. Force and torque

The force and torque on needle I due to needle II can be evaluated using Eqs. (2.2)–(2.5) and (2.7)–(2.11), respectively. The

stress tensor average in the annulus [55,56] was determined by Cardy [37] and can be written as

〈T (w)〉 ≡ 〈T (w)〉annulus =
1

2w2
t(h), (4.22)

where

t(h) ≡ h
d

dh
ln

(

{1 + [(S11 + S21)/2,S11,S21,S22]}
∞
∏

n=1

(1 − h2n)−1

)

(4.23)

for the combinations OO,++,+−,O+ of universality classes of the two needles [49]. Here

Spq ≡ Spq(h) =
∞
∑

r=2

h(r2−1)/24 sin
πpr

3
sin

πqr

4

/(

sin
πp

3
sin

πq

4

)

, (4.24)

where the series converges for h < 1. For the integration path C in Eqs. (2.5) and (2.11), which goes around the inner boundary

circle counterclockwise, it is most convenient to use the circle Cc given by w = Ch1/2eiϕ , which passes through the preimage

w = Ch1/2 of z = ∞.

Unlike the force and torque contributions τ (T ) and θ (T ) in Eqs. (2.5) and (2.11), which depend, via Eqs. (4.22)–(4.24), on the

surface universality classes of the two needles, the contributions τ (S) and θ (S), which involve z′(w) and the Schwarzian derivative

(2.2), are solely determined by the geometric configuration of the needles and in this sense “hyperuniversal.” This was already

mentioned at the end of Sec. II, and it applies to the semi-infinite and infinite needles of Sec. III. The occurrence of a hyperuniversal

term in the free energy of interaction of a noncircular particle with other particles in a near-critical two-dimensional system is

well known from the SPOE. As discussed in Refs. [17,57] and Appendix B 2, the hyperuniversal interaction arises from the stress

tensor in the operator expansion corresponding to the particle, in our case a needle. The hyperuniversal term in the expansion

depends on the orientation of the needle, is proportional to the square of its length (which is the smallest power involving its

orientation dependence), and reproduces the results corresponding to the h → 0 contributions of τ (S) and θ (S), as we show in

Eqs. (4.29)–(4.31).

In general, the force vector is neither parallel nor antiparallel to the vector zI,II between the needle midpoints, as seen,

for example, in Eq. (4.29). However, for the symmetric-perpendicular and -parallel configurations in (A) and (B) and for the

mirror-symmetric configurations (C), the force clearly points along zI,II or −zI,II. Detailed numerical results for force and torque

in cases (A)–(D) are reported in Sec. V. Here we give a few analytic results for the case (E) of two short needles or, equivalently,

two widely separated needles.

According to Eqs. (4.18) and (4.19), this regime corresponds to small h, and in leading order

τ (T ) =
2i

zI,II

t(h ≪ 1), τ (S) =
2i

zI,II

h2e2i(−ϕ1+ϕ3), (4.25)
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for the two contributions to the force on needle I in Eq. (2.3). For more details, see Eqs. (B1)–(B6) in Appendix B. On using

(4.23) and (4.24), we obtain

t(h ≪ 1) = [h,−h] (4.26)

for needle pairs of type [OO,O+], while for pairs of type [++,+−]

t(h ≪ 1) =
1

8
[
√

2h1/8/(1 +
√

2h1/8), −
√

2h1/8/(1 −
√

2h1/8)], (4.27)

for h values which are small compared to 1 without requiring h1/8 to be small. The force (fx,fy) on needle I in Eq. (2.3) is thus

dominated by the contribution from τ (T ). In the remainder of this section we again assume that zI,II ≡ |zI,II|, so that the distance

vector zI,II between needle centers is parallel to the x axis. Using h → |z12||z34|/(16|z2
I,II|) due to (4.18) and (4.19), one finds

fx/kBT = −
1

|zI,II|
×
[

±
1

8

DIDII

|zI,II|2
, ±

1

4

(DIDII)
1/8

|zI,II|1/4

/(

1 ±
(DIDII)

1/8

|zI,II|1/4

)]

(4.28)

and fy/(kBT ) = 0 for the force components in leading order. Here the upper and lower signs describe the needle universality

classes [OO,++] and [O+,+−], respectively, and DI ≡ |z12| and DII ≡ |z34| are the needle lengths introduced in Eq. (4.9).

For needles with equal (unequal) universality classes the force is antiparallel (parallel) to the distance vector zI,II, i.e., attractive

(repulsive), as expected. As in a multipole expansion, the shape anisotropy does not appear in the leading “monopole” contribution

(4.28), in which the force is independent of the needle orientations �12 and �34, but it appears in higher order in the needle

lengths. Unlike the corresponding higher-order contributions from τ (T ), which also depend on the needle universality classes,

the contributions from τ (S) are hyperuniversal, as mentioned above. Equations (4.18) and (4.19) imply e−iϕ1 → ei�12 and

eiϕ3 → −ei�34 , and the lowest-order hyperuniversal term, given by the second expression in Eq. (4.25), leads to

(

f (S)
x , f (S)

y

)/

(kBT ) = −
D2

I D
2
II

27|zI,II|5
{cos[2(�12 + �34)], − sin[2(�12 + �34)]}. (4.29)

As expected, the force is unchanged on rotating a needle through 180◦.

We now turn from Eq. (4.29) to the hyperuniversal contribution −Re θ (S) to the reduced torque �/(kBT ), introduced in

Eqs. (2.7)–(2.11). Calculating θ (S) by means of the mapping (4.2), one obtains

θ (S) → −ih2e2i(−ϕ1+ϕ3), Reθ (S) →
D2

I D
2
II

28|zI,II|4
sin[2(�12 + �34)] (4.30)

in leading order. For more details, see the paragraph containing Eqs. (B7) and (B8) in Appendix B.

A detailed discussion of the force and torque for two short needles, based on the SPOE, is given in Appendix B 2 a. With this

entirely different approach we confirm the leading behavior (4.28) for the force and obtain

δF (hu)/(kBT ) = −
D2

I D
2
II

210

(

e2i(�12+�34) 1

z4
I,II

+ c.c.

)

(4.31)

for the hyperuniversal (hu) contribution to the free energy of interaction [45] of the needles, which agrees with the results for the

force components in Eq. (4.29) and the torque in Eq. (4.30).

B. Interaction of a finite and a semi-infinite needle

Consider the case in which needle 12 has a finite length DI ≡ |z12| but needle 34 is semi-infinite, with z3 = ze and z4 = ∞.

This needle geometry is generated by Eq. (4.2) in the limit C = h1/2 and w4 = h in which the preimages w4 and Ch1/2 of z = z4

and z = ∞, respectively, coincide, so that

z′(w) =
A

h2

∞
∏

k=1

[

(1 − h2k−3e−iϕew)(1 − h2k+1eiϕe/w)

(1 − h2k−3w)3(1 − h2k+1/w)3

∏

n=1,2

(1 − h2k−2e−iϕnw)(1 − h2keiϕn/w)

]

. (4.32)

This implies

dz = (dϕ)iA e−iϕe G(ϕ; ϕ1,ϕ2)

∞
∏

k=1

|1 − h2k−1ei(ϕ−ϕe)|2
∏

n=1,2 |1 − h2kei(ϕ−ϕn)|2

|1 − h2k−1eiϕ |6
(4.33)

and

dz = −(dϕ)
iA

h
e−iϕe/2 sin[(ϕ − ϕe)/2]

4 sin3(ϕ/2)

∞
∏

k=1

|1 − h2kei(ϕ−ϕe)|2
∏

n=1,2 |1 − h2k−1ei(ϕ−ϕn)|2

|1 − h2keiϕ|6
, (4.34)
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for displacements dw = d(eiϕ) and dw = hd(eiϕ) around the

outer and inner boundaries of the annulus, respectively. Here

G is defined in Eq. (4.5), and w3 ≡ we = heiϕe is the preimage

of ze. The behavior (4.34) near ϕ = 0 implies that the semi-

infinite needle extends from z = ze to z = s|∞| along the

tangential unit vector s = −i(A/|A|)e−iϕe/2 sgnϕe with ϕe ≡
ϕ3 obeying (4.7). For convenience we choose the semi-infinite

needle to coincide with the positive real axis, i.e., ze = 0 and

s = 1, so that

A = i|A|eiϕe/2sgnϕe. (4.35)

From Eq. (4.14) we obtain

ei�12 = −e−i(ϕ1+ϕ2+ϕe)/2 sgn(ϕ1 − ϕ2) sgnϕe, (4.36)

since �34 = π , ϕ4 = 0, and ϕ3 = ϕe.

Apart from homogeneous dilatations, the needle config-

uration is determined by three parameters: the length ratio

|z12|/|zI| and the two angles argzI and �12 which zI and

z12 form with the semi-infinite needle. Here zI ≡ rI,x + irI,y

is the vector from ze = 0 to the midpoint of needle 12.

Correspondingly, there are, apart from |A|, three independent

mapping parameters. Since the derivative dz/dw is analytic in

the interior of the annulus, imposing the requirement

Iouter ≡
∫

Couter

dw(dz/dw) = 0 (4.37)

on the four parameters h, ϕ1, ϕ2, ϕe ensures that the mapping

z = z(w) is single valued.

Now consider the case of a finite needle which is much

shorter than its distance from the closest point of the semi-

infinite needle, so that |z12|2 ≪ |zI|(|zI| − rI,x). Explicit results

for the force and torque in this regime can be obtained by

expanding in terms of h and are expected to agree with the

SPOE. In the remainder of this section this is checked in

leading order.

For small h the constraint (4.37) reads

ϕ2 = ϕ1 − πsgn(ϕ1 − ϕ2)

+2h[3 sin ϕ1 − sin(ϕ1 − ϕe)] + O(h2), (4.38)

yielding in terms of independent parameters the needle

configuration

zI →
|A|

4h| sin ϕe/2|
e−iϕe , (4.39)

z12 → −4|A|ie−iϕ1e−iϕe/2sgnϕe, (4.40)

to leading order in h. Since ie−iϕ1 equals e−i(ϕ1+ϕ2)/2sgn(ϕ1 −
ϕ2) in leading order [see Eq. (4.16)], Eq. (4.40) is consistent

with (4.36). Equations (4.39) and (4.40) allow us to express

|A|, h, ϕ1, ϕe in terms of needle parameters, and we note that

|A| → |z12|/4 (4.41)

and

h →
1

8

|z12|
√

2|zI|(|zI| − rI,x)
(4.42)

for use below.

The force (fx,fy) on the 12 needle follows from Eqs. (2.3)

and (2.5) on substituting the derivative (4.32), integrating along

a circle infinitesimally larger than the inner boundary circle of

the annulus, avoiding the singularity at w = we = heiϕe .

The leading contribution comes from τ (T ) and is given by

τ (T )/t(h) →
1

4|zI|
eiϕe/2(eiϕe − 3)

sin(ϕe/2)
, (4.43)

yielding

[(fx − ify)/(kBT )]/t(h) ≡ iτ/t(h) → −
3zI − |zI|

2zI(zI − |zI|)
,

(4.44)

since zI/|zI| → e−iϕe ; see Eq. (4.39). The leading contribution

to the force follows from Eq. (4.44) on replacing t(h) with

t(h ≪ 1) in Eqs. (4.26) and (4.27) and on replacing h with

the right-hand side of Eq. (4.42). As in Eq. (4.28), the leading

contribution is independent of the orientation �12 of the small

needle. The leading dependence on orientation comes from τ (S)

in Eq. (2.5) in higher order in h. In Appendix B 2 b we use the

SPOE to calculate the leading isotropic and angle-dependent

contributions to the force and the leading contribution to the

torque on the 12 needle. The SPOE prediction is in complete

agreement with the h-expansion result for the force given in

Eq. (4.44).

C. Interaction of a finite and an infinite needle

On setting w3 = w4 = Ch1/2 = h in Eq. (4.2), both z3 and

z4 become infinite, so that the 34 needle takes the form of an

infinite needle or boundary line. For A = −i|A|, the infinite

needle coincides with the boundary Imz = 0 of the upper half

plane. The derivative of the transformation is given by

z′(w) = −i|A|
1

h2

∞
∏

k=1

×
∏

n=1,2(1 − h2k−2e−iϕnw)(1 − h2keiϕn/w)

(1 − h2k−3w)2(1 − h2k+1/w)2
,

(4.45)

so that

dz = (dϕ)|A|G(ϕ; ϕ1,ϕ2)

×
∞
∏

k=1

∏

n=1,2 |1 − h2kei(ϕ−ϕn)|2

|1 − h2k−1eiϕ |4
(4.46)

and

dz = −(dϕ)
|A|
h

1

4 sin2(ϕ/2)

×
∞
∏

k=1

∏

n=1,2 |1 − h2k−1ei(ϕ−ϕn)|2

|1 − h2keiϕ|4
(4.47)

for displacements dw = d(eiϕ) and dw = hd(eiϕ) along the

outer and inner boundary circles, respectively. Thus, a coun-

terclockwise path around the inner circle corresponds to a path

along the real axis from +∞ to −∞, and a counterclockwise

path around the outer circle to a clockwise path around the 12

needle along its edges. The function G is defined by Eq. (4.5).
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As in the case (4.32) of a finite needle interacting with

a semi-infinite needle, the constraint Iouter = 0 ensures that

the mapping Eqs. (4.45) is single valued, so that only two of

the three parameters h, ϕ1, ϕ2 are independent. They can be

adjusted to fix the angle �12 between needle and boundary and

the ratio of the length |z12| of the needle and its distance to the

boundary. According to the argument leading to Eq. (4.14),

the unit vector characterizing the direction of z12 is given by

ei�12 ≡
z12

|z12|
= e−i(ϕ1+ϕ2)/2sgn(ϕ1 − ϕ2). (4.48)

1. Distant needle

A needle far from the boundary in comparison with its

length corresponds to h ≪ 1. The products in Eqs. (4.45)–

(4.47) can be expanded in powers of h, and Eq. (4.37) yields

ϕ2 = ϕ1 − πsgn(ϕ1 − ϕ2) + g(ϕ1; h),

g(ϕ1; h) ≡ 4h sin ϕ1 + 4h2 sin(2ϕ1) + O(h3), (4.49)

which is consistent with the constraint (4.38) in Sec. IV B on

setting ϕe = 0 there. For the vector z12 between the ends of

the needle and for the distance rI,y ≡ ImzI ≡ Im(z1 + z2)/2 of

the needle center from the boundary, one obtains

z12 → 4|A|(1 + 2h2 cos2 ϕ1)e−i{ϕ1+[−π+g(ϕ1;h)]/2} + O(h3),

rI,y →
|A|
2h

{1 + 2h2[1 + 2 cos(2ϕ1)] + O(h3)}. (4.50)

The direction of the needle, given by the phase factor of z12

in Eq. (4.50), is consistent with the general expression on the

right-hand side of Eq. (4.48).

2. Force and torque

The force and the torque which the boundary exerts on

needle 12 are again given by Eqs. (2.3)–(2.5) and (2.7)–(2.11)

together with (4.22)–(4.24), except that now dz/dw and S(w)

follow from (4.45). It is most convenient to use the integration

path C in Eqs. (2.5) and (2.11) along the inner boundary

circle of the annulus. Since there is no force fx parallel to

the boundary, the imaginary part of τ must vanish.

For a distant needle the force is determined by τ (T ) for

h ≪ 1. In this regime Eqs. (2.5), (4.22), and (4.47) imply

τ (T )/t(h) → 2h/|A|, and using Eqs. (4.50), one obtains

fy

kBT
→ −

1

rI,y

t(h ≪ 1), h →
|z12|
8rI,y

, (4.51)

where t(h ≪ 1) is taken from Eqs. (4.26), and (4.27). As

expected, this result is in agreement with (4.44) in Sec. IV B

for rI,x → +∞. An orientation dependence of the needle

only appears in higher order and is determined explicitly

for the needle geometry considered here with the SPOE in

Appendix B 2 c. As for τ (S), we have checked that its leading

h power is higher than h3, so that τ (S) does not contain a term

proportional to |z12|2/r3
I,y . This is consistent with the vanishing

of the stress-tensor average in the half plane and the absence

in the SPOE of a hyperuniversal contribution ∝|z12|2 to the

free energy, force, and torque.

FIG. 4. Component fx of the force exerted on needle I by needle

II for needles of equal length DI = DII = D in the symmetric-

perpendicular configuration (A) shown in Fig. 3. Here c = zI − z4

is the distance from the right tip of needle II to the midpoint of needle

I. The points indicate the numerical predictions of our exact approach,

and the two curves show the asymptotic forms derived in the text for

large and small c/D. The force component fy and the torque vanish

due to symmetry. For more details, see Sec. V.
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The leading contribution to the torque � is determined by

θ (T ) and is given by

�

kBT
→ −Reθ (T ) → 6h2 sin(2ϕ1) t(h ≪ 1);

sin(2ϕ1) → sin(2�12), h →
|z12|
8rI,y

, (4.52)

where the h expansion of Re θ (T )/t(h) is derived in Ap-

pendix B 1 b and Eqs. (4.48)–(4.50) have been used. Equa-

tions (4.51) and (4.52) are consistent with the SPOE results in

Appendix B 2 c.

V. RESULTS FOR ARBITRARY NEEDLE LENGTHS

We now consider some simple needle geometries in which

the needle length is neither very large nor very small compared

to the distance between the needles. Calculating the force and

torque requires the full machinery described in Sec. IV for

arbitrary values of the mapping parameter h in the interval

0 < h < 1. Unlike the completely analytic approaches for

semi-infinite needles in Sec. III and for short needles (small h

expansion) in Sec. IV, we now resort to numerical evaluation,

which, however, yields results over the entire range from small

to large needle lengths [58]. Actually, we restrict our attention

to needle configurations for which the six mapping parameters

are restricted to subspaces of lower dimension. These include

FIG. 5. Component fx of the force exerted on needle I by needle II for needles with separation c = zI − zII in the symmetric-parallel

configuration (B) in Fig. 3. The results in the left and right columns are for needles of the same length DI = DII = D and for needles with

different lengths, DI = D and DII = c, respectively. The points indicate the numerical predictions of our exact approach, and the curves show

the asymptotic forms derived in the text for large and small D/c. The force component fy and the torque vanish due to symmetry. For more

details, see Sec. V.
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FIG. 6. Force fx and torque � exerted on needle I by needle II for needles of equal length D in the mirror-symmetric configuration (C)

shown in Fig. 3. Here c = z2 − z4 is the distance between the closest points of the needles, and the angle α between them is π/5. The points

indicate the numerical predictions of our exact approach, and the two curves show the asymptotic forms derived in the text for large and small

D/c. The force component fy vanishes due to symmetry. For more details, see Sec. V.

configurations (A)–(D) introduced between Eqs. (4.15) and

(4.16) and the configurations of a finite needle in the half

plane, discussed in Sec. IV C:

(A) For the symmetric-perpendicular configuration (A)

defined in Sec. IV A 1 and shown in Fig. 3, the force

component fy and the torque on needle I vanish, due to

symmetry. The component fx is attractive (fx < 0) for needle

university classes OO, + + and repulsive (fx > 0) for classes

+ − ,O+. We consider the case of equal needle lengths DI =
DII = D, in which Dfx/(kBT ), apart from the universality

classes, only depends on c̃ = c/D, where c = zI − z4 is the

minimum distance between the needles. In Fig. 4 the numerical

results of our exact approach for Dfx/(kBT ) in the region

10−2 < c̃ < 102 are indicated by full points. For large and

small c̃ there is excellent agreement with the asymptotic

behavior (B32) and (B33) for short needles and with the results

of Sec. III for semi-infinite needles, respectively. In the latter

limit, c̃ → 0, and the force fx becomes independent of D and

is given by fy in Eq. (3.6) with α = π/2 and ry(1) = c.

(B) In the symmetric-parallel configuration (B) defined in

Sec. IV A 1 and shown in Fig. 3, the force component fy and

the torque on needle I also vanish by symmetry. We have

evaluated fx numerically in two special cases, B1 and B2. In

case B1, which is denoted by (ii) in Sec. IV A 1 and is a special

case of classes (B), (C), and (D) [53], both needles have the

same length DI = DII = D. In case B2 we denote the length

DI of needle I by D and choose the length DII of needle II equal

to the needle separation c = zI − zII. The dependence of cfx on

D/c in both cases, B1 and B2, is shown in Fig. 5. Again our

numerical results (points) merge nicely with the asymptotic
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FIG. 7. Components fx, fy of the force exerted on needle I by needle II for needles of equal length D in the nonsymmetric parallel

configuration (D′) shown in Fig. 3. Here W = r1,y − r4,y ≡ Im(z1 − z4) is the vertical separation of the needles, and V = r4,x − r1,x ≡
Re(z4 − z1) is the relative horizontal displacement. Results are shown for the fixed ratio V/W = 1.4. The points indicate numerical predictions

of our exact approach, and the two curves show the asymptotic forms derived in the text for large and small D/W . For more details, see Sec. V.

expressions (curves) for small and large D/c. For small D/c

these follow from Eqs. (B35) and (B36) with α = 0 in case

B1 and from Eqs. (B59)–(B61) in case B2. For large D/c

case B1 reduces to an infinitely long strip, and cfx/(kBT ) →
�D/c, where � = π (t̃ − 1/48), with t̃ given in Eq. (3.4), is

the corresponding Casimir amplitude [56]. For large D/c case

B2 reduces to a needle II parallel to the boundary of a half

plane, a geometry considered in the last two paragraphs of this

section, and cfx/(kBT ) is the same as Dfy/(kBT ) for B̃ = 1

and � = 0 in Fig. 10. Note that in case B2 the dependence

of fx is nonmonotonic and displays a maximum. We attribute

the decrease of c|fx | for large increasing D/c to the fact that

for finite D both sides of needle I contribute to the interaction,

while for D = ∞ it is only the side which faces needle II.

For the case in which the length of needle II is much smaller

than the needle separation c, one can derive the complete

nonmonotonic dependence on D/c, including the maximum,

analytically using Eqs. (B58)–(B61).

(C) For the mirror-symmetric configuration (C) defined in

Sec. IV A 1 and shown in Fig. 3, the force component fy

vanishes for all angles π − 2�12 ≡ α between the needles.

The component fx and the torque � are nonzero, with the

exception of the torque at α = 0 and π . Figure 6 shows fx

and � for needles forming an angle α = π/5 = 36◦ and with

lengths ranging from short to long. The quantities cfx/(kBT )

and �/(kBT ) are plotted as functions of D/c ≡ 1/c̃, where

the minimum separation c = z24 = z2 − z4 of the needles is

the distance between the two lower needle ends. For small D/c
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the numerical data (solid points) merge nicely with the results

of the small needle expansion given in Eqs. (B35) and (B36).

For large D/c the data for the (D-independent) force are in

excellent agreement with the corresponding force for mirror-

symmetric semi-infinite needles following from Eqs. (3.9) and

(3.11) with b = 1. The torque appears to vary linearly with D

for large D, in agreement with the analytic argument at the

end of Appendix C.

(D) Next we consider the force and torque on needles

of equal length in the nonsymmetric parallel configuration

defined in Sec. IV A 1. We use the orientation (D′) illustrated

in Fig. 3(D′), where the needles are parallel to the x axis [54],

with z34 = −z12 = D. The configuration is uniquely specified

by the value of D, the vertical separation of the needles

W = r1,y − r4,y , and the relative horizontal displacement V =
r4,x − r1,x . For the fixed ratio V/W = 1.4, Figs. 7 and 8 show

our numerical results (points) for Wfx/(kBT ), Wfy/(kBT ),

and �/(kBT ) as functions of D/W . For small D/W we show

the small needle prediction following from Eqs. (B41)–(B46).

For large D/W the perpendicular force component fy is

dominated by the usual Casimir force for a long strip [34],

so that Wfy/(kBT ) → (D/W )� with � from [56]. This and

the behavior of the (D-independent) parallel force component

fx and of the torque � for large D/W , derived in Eqs. (C4),

(C5), and (C3), respectively, are also indicated by solid lines

in the figures.

Finally, we consider the force and torque on a single needle

in the upper half plane for various ratios B̃ ≡ rI,y/D of the

distance of the needle center from the boundary to the needle

length and for various angles �12 ≡ � between the needle and

the boundary. The torque vanishes by symmetry for � = 0 and

� = ±π/2. The results for B̃ = 10 and 0 < � < π/2, shown

in Fig. 9, are in perfect agreement with the predictions (B56)

and (B57) of the operator expansion for a distant needle. In

this case fy − fy |�=π/4 and � are odd and even functions,

respectively, of � − π/4. Figure 10 shows corresponding

results for the intermediate distance ratio B̃ = 1, where the

minimum distance between the needle and the boundary,

which corresponds to the perpendicular orientation � = π/2,

is half the length of the needle. As expected, there are

significant deviations from our operator expansion of low

order, in particular for the force near � = π/2. As implied

by Eqs. (B55) and (B56) and illustrated in Fig. 10, the

convergence of the SPOE with increasing reduced distance B̃

is slowest for the mixed boundary condition (+−). This is not

surprising, since for this combination of boundary conditions

the perturbation of one needle due to the other is the most

severe, with, in Ising language, the spins forced to reverse

direction.

For B̃ < 1/2 the needle touches the boundary before

attaining the perpendicular orientation, and the force and

torque diverge. Figure 11 shows the case B̃ =
√

3/4 = 0.433

for 0 < � < π/3, with diverging results as � approaches

the angle π/3 and the distance r2,y = 1
2
D(sin π

3
− sin �) of

the needle tip z2 from the boundary shrinks to zero. Since the

divergence is a local effect, for r2,y ≪ D one expects fy to

be independent of D and the same as the force (3.6) on a

semi-infinite needle with the same end point r2,y ≡ ry(1) and

angle � ≡ α in the notation of Sec. III A. From Eq. (3.6) we

obtain Dfy/kBT ≈ − 1
12

(5 − 216 t̃)(π
3

− �)−1 for the leading

FIG. 8. Torque � on needle I for the same nonsymmetric parallel

configuration considered in Fig. 7.

divergent term, which is plotted in Fig. 11. The exact numerical

data (points) in the figure are in excellent agreement with this

prediction, and for all four sets of boundary conditions it gives

an astonishingly good fit over the entire range 0 < � < π/3.

Heuristic arguments (see last two paragraphs of Appendix C)

suggest that the torque also diverges as (π
3

− �)−1, and the

exact numerical data in Fig. 11 appear to support this.
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FIG. 9. Dependence of the force fy and torque � on a needle of length D in the upper half plane on the angle � between the needle and

the boundary. The ratio B̃ = rI,y/D, where rI,y is the distance of the needle midpoint from the boundary, has the value B̃ = 10. The points

indicate numerical predictions from the exact approach, and the curves show the analytic results (B56) and (B57) of the operator expansion for

a distant needle, i.e., for large B̃. The force component fx vanishes. For more details see Sec. V.

VI. SUMMARY AND CONCLUDING REMARKS

The Casimir interaction of particles immersed in a binary

liquid mixture near a critical point of miscibility has a long

range and universal character, and nonspherical particles

experience both a force and a torque. We consider the

interaction of two needle-shaped particles right at the critical

point of a two-dimensional fluid in the Ising universality class.

While particular needle configurations have been considered

before [35], the approach of this paper allows us to calculate

the interaction for two needles of arbitrary lengths, separa-

tions, and orientations for various combinations of surface

universality classes [26].
As in earlier work [17,29,35,36,57], we utilize the con-

formal invariance of two-dimensional critical systems and
generate the needle geometry of interest from a simpler

standard geometry by means of a conformal mapping. As
outlined in Sec. II and Appendix A, we work with the stress
tensor, which has well-understood conformal transformation
properties, is known in the simple standard geometry, and
determines the force and torque in the needle geometry of
interest.

In Secs. III A and III B we consider arbitrary configurations

of an infinite and a semi-infinite needle and of two semi-infinite

needles and obtain the results for the force given in Eqs. (3.3),

(3.6), (3.9), and (3.11), respectively. The simple form of the

force follows from the simplicity of the stress tensor in the

standard geometry and of the mapping generating the needles.

The region outside the needles is simply connected, and the

standard geometry is the upper half plane with the two needles

on the x axis. In Sec. III C and Appendix D we show how

to extend the approach to needles with different boundary
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FIG. 10. Same as Fig. 9, except that the ratio B̃ has the value B̃ = 1 instead of 10. Since the distant needle condition B̃ ≫ 1 is not satisfied,

the numerical predictions from the exact approach (points) deviate significantly from the predictions (curves) of the operator expansion for a

distant needle. For more details, see Sec. V.

conditions on the two sides, for example, a needle along the

x axis with its upper edge in the class − and its lower edge

in the class +. Explicit results are given for the force between

(i) two semi-infinite collinear needles [see Eqs. (D7)–(D9)]

and (ii) a semi-infinite needle perpendicular to the boundary

of the half plane. In the latter case we also consider a boundary

with “chemical steps” [40], which separate the x axis into

segments with + and − boundary conditions, and our results

for the normal and lateral forces acting on the needle in the case

of one and two chemical steps are given in Eqs. (D10)–(D18)

[59]. In this context we have obtained new results (D2)–(D4)

for the stress tensor in the half plane with an inhomogeneous

boundary [60].

For needles of finite length the space bounded by the

needles is doubly connected, and the standard geometry is

an annulus with circular needles on its boundaries. The stress

tensor in the annulus is known from Cardy’s work [37,55]

and is summarized in Eqs. (4.22)–(4.24). The mapping onto

the two-needle geometry is a special case of Akhiezer’s

formula [51] for mapping the annulus onto the region outside

two nonoverlapping polygons, and its derivative is given by

Eq. (4.2) in Sec. IV A. Two conditions (4.8) are imposed

to ensure that the mapping is single valued. Searching for

values of the six parameters h,C,ϕ1, . . . ,ϕ4 in Eq. (4.2) that

satisfy these two conditions and generate a given needle

configuration is a formidable task. The simple relation (4.14),

which expresses the angle enclosed by the two needles in terms

of the sum ϕ1 + · · · + ϕ4 reduces the space of parameters

in which one must search, and we have found some simple

configurations (A)–(D) of the needles, discussed in Sec. IV A 1
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FIG. 11. Same as Fig. 9 except that B̃ =
√

3/4 = 0.433. Both fy and � diverge as � approaches π/3, the angle at which the needle tip

touches the boundary. For � close to π/3, the numerical predictions (points) for fy agree with the asymptotic expression (curves) given in the

last paragraph of Sec. V. Like fy , � also appears to diverge as ( π

3
− �)−1. The numerical results for � are compared with fits of the form

�fit(�) = A( π

3
− �)−1, with A chosen to reproduce the rightmost point in each graph.

and shown in Fig. 3, in which the space can be further reduced.

In Secs. IV B and IV C we analyze the special case in which one

of the needles has a finite length and the other is semi-infinite

or infinite.

We have put the finite-needle approach to work in two ways:

(a) First of all, we have analyzed the case of needles with

separation much greater than their lengths analytically. In

this regime the inner radius h ≪ 1 of the annulus is much

smaller than the outer radius of 1, and both the small h

expansion and the small-particle operator expansion (SPOE)

yield information on the force and torque. Beginning in

paragraph (E) of Sec. IV A 1 and continuing in Secs. IV A 2,

IV B, and IV C and Appendix B, we show the consistency

of these two approaches. For example, the hyperuniversal

contribution to force and torque, which is independent of the

surface universality class and arises via (2.3)–(2.11) from the

Schwarzian derivative of the mapping, is provided within the

SPOE (B15) by the stress-tensor operator (B18).

(b) Second, by using the same conformal mapping approach

and evaluating formulas numerically, we have studied the force

and torque over the full range from small to large values

of the ratio of needle length to needle separation. Results

for several types of needle configurations (see Fig. 3) and

several combinations of universality classes are shown in

Figs. 4–11 and discussed in Sec. V. In all cases the force

is attractive for OO and ++ boundaries and repulsive for

+− and O+. For needles which are very short or very long

in comparison with their separation, the numerical results
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in Figs. 4–11, shown by points, are in excellent agreement

with the curves, indicating the exact asymptotic behavior. The

asymptotic behavior for short needles follows from the SPOE.

For long needles it follows from the results for needles of

infinite length in Sec. III and for strongly overlapping and long

mirror-symmetric needles in Appendix C. In configuration

(D′), for example, the force component fx and the torque � are

predicted [see Eqs. (C4), (C5), and (C3)] to be independent

of D and to vary linearly with D, respectively, in the large

D limit, as shown in Figs. 7 and 8. For the mirror-symmetric

configuration (C) the torque � is also predicted to vary linearly

with D for large D (see end of Appendix C), as shown

in Fig. 6. All of the asymptotic predictions in Figs. 4–11

are free of adjustable parameters, except for the torque �

in Fig. 6 for large D and in Fig. 11 for �/π → 1/3 (see

the discussion in Sec. V). Finally, we recall that for certain

configurations of needles of intermediate length, there is an

interesting nonmonotonic dependence of the force on needle

length, see, e.g., the right side of Fig. 5 and the discussion at

the end of paragraph (B) in Sec. V.

We close by comparing the advantages and disadvantages

of the conformal mapping approach of Secs. IV and V and

of the approach based on the SPOE. For evaluating the

force and torque for arbitrary size to separation ratios, as in

Sec. V, the former is clearly superior. However, it is limited to

two-dimensional critical systems with conformal symmetry,

to particle surfaces with uniform boundary conditions, and

to the interaction of two particles [61] immersed in the

critical medium. The SPOE is applicable only if the particle

size is small compared to the interparticle separation and to

the correlation length of the medium in which the particles

are immersed. However, the SPOE is not limited to two

dimensions, is valid in near-critical as well as critical systems,

and also applies if there are more than two immersed particles

[62] and if the particles have nonuniform boundary conditions

[63]. In addition to spherical and nonspherical particles

embedded in near-critical fluids [29,57], the SPOE method

has been applied to particles bound to fluctuating surfaces in

Ref. [24], where it is called “effective field theory.”

APPENDIX A: TRANSLATION AND ROTATION

OF ONE OF TWO PARTICLES

A general infinitesimal coordinate transformation,

r̂ = r + a(r), (A1)

changes the geometry of a critical system, including the sizes,

shapes, separations, and orientations of embedded particles,

from G to Ĝ. The corresponding change in the universal

scaling part [64] of the free energy is given by

FĜ − FG = −kBTc

∫

dr
∑

k,ℓ

[∂ak(r)/∂rℓ]〈Tkℓ(r)〉G (A2)

to first order in a, where Tkℓ is the stress tensor [34,46].

For two particles in the (rx,ry) plane, the force and torque

on particle I due to particle II follow directly from the change in

free energy as particle I is translated by an infinitesimal vector

(dRx,dRy) or rotated by an infinitesimal angle d� about a

point (r0,x,r0,y), while keeping particle II fixed. Assuming that

particles I and II are located above and below the line ry = r̃y ,

respectively, we fix particle II by choosing

(ax(r), ay(r)) = (Ax(r), Ay(r)) × �(ry − r̃y), (A3)

where � is the standard unit step function. To translate and

rotate I, we choose

(Ax, Ay) = (dRx, dRy), (A4)

(Ax(r), Ay(r)) = (−ry + r0,y ,rx − r0,x)d�, (A5)

respectively. On substituting

∂ak/∂rℓ = [∂Ak/∂rℓ] × �(ry − r̃y) + Akδℓ,yδ(ry − r̃y) (A6)

in Eq. (A2), the first term on the right-hand side does

not contribute, since ∂Ak/∂rℓ vanishes for the shift and is

antisymmetric in kℓ for the rotation, while Tkℓ is symmetric.

Thus,

FĜ − FG = −kBTc

∫ ∞

−∞
drxJ,

J =
∑

k=x,y

Ak(rx,r̃y)〈Tky(rx,r̃y)〉G. (A7)

Of course, FĜ − FG should not depend on the precise

choice of r̃y , and this property follows from the vanish-

ing of ∂(
∫∞
−∞ drxJ )/∂r̃y due to the continuity equation

∑

ℓ ∂〈Tkℓ(r)〉G/∂rℓ = 0 at any point r outside the particles.

Using the relations

〈Tyy(rx,r̃y)〉G = −〈Txx(rx,r̃y)〉G = Re ϑ(z),

〈Txy(rx,r̃y)〉G = 〈Tyx(rx,r̃y)〉G = Im ϑ(z), (A8)

ϑ(z) ≡ 〈T (z)〉G/π, z = rx + ir̃y,

between the Cartesian components and complex form of the

stress tensor (see [34,46]), one finds

J = dRxIm ϑ(z) + dRyRe ϑ(z), (A9)

J = d�Re[(z − z0)ϑ(z)], z0 = r0x + ir0y, (A10)

for the translation and rotation, respectively. Together with

Eq. (A7) and drx = dz, this implies

FĜ − FG = kBT

[

dRxIm

∫

CI

dzϑ(z) + dRyRe

∫

CI

dzϑ(z)

]

,

(A11)

FĜ − FG = kBT d�Re

∫

CI

dz(z − z0)ϑ(z), (A12)

where the closed integration contour CI goes clockwise around

particle I, with particle II outside the contour. In arriving at

this result, we first deformed the integration path in Eq. (A7)

to a counterclockwise loop around needle I, as allowed by

the analyticity [34] and large z properties of ϑ(z) and of (z −
z0)ϑ(z). We then replaced this integral by minus the integral

around the clockwise contour CI.

Equations (A11) and (A12) are more general than our

derivation and also apply to configurations in which the two

particles do not lie above and below a line parallel to the
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rx axis. The same is true of the corresponding expressions

(2.4) and (2.8) for the force and the torque. Two needles

can always be separated by a straight line, and after an

appropriate global rotation of the system, Eq. (A3) can

be applied. On rotating counterclockwise by an arbitrary

finite angle ω, 〈T (z)〉 → e−2iω〈T (z)〉, dz → eiωdz, z − zI →
eiω(z − zI), and Eqs. (2.4) and (2.8) correctly predict the

rotation fx + ify → eiω(fx + ify) of the force and that the

torque is unchanged. Expressions (A11) and (A12) hold for

two particles of arbitrary shape, even if they are positioned

so that no separating straight line exists. This follows from a

modified infinitesimal transformation (A3) in which the region

onto which the step function � projects is not a half plane.

For the special case of two widely separated needles

we have checked the consistency of Eqs. (A11) and (A12)

with the small-particle operator expansion reviewed in

Appendix B 2.

APPENDIX B: EXPANSIONS FOR SHORT NEEDLES

The Casimir interaction of a needle which is short compared

to the distance to other particles and to the boundary can

be studied analytically in a power series expansion. In

Appendix B 1 we consider the small h expansion, where h

is the ratio of the inner to outer radius of the annulus, and

provide more details on the derivation of the distant needle

results for force and torque presented in Sec. IV. In Appendix

B 2 we study the interaction of the needles with the SPOE.

Since the two methods must lead to identical results, one can

make useful checks.

1. Expanding for small h

a. Two small needles

To arrive at the form of τ (S) for widely separated needles given in Eq. (4.25), we expand the Schwarzian derivative on the

circle C = Cc, defined below Eq. (4.24) and considered in Fig. 2, in terms of h, obtaining

S(w = h1/2Ceiϕ) × C2e2iϕ/6 =: σ (ϕ) = σ0(ϕ) + h1/2σ1(ϕ) + hσ2(ϕ) + O(h3/2), (B1)

where

σ0 = −C2e2iϕe−2iϕ1 − C−2e−2iϕe2iϕ3 ,

σ1 = 2{C3e2iϕ(e−iϕ1 − e−3iϕ1 ) + C−3e−2iϕ(eiϕ3 − e3iϕ3 )},
σ2 = C4e2iϕ[−1 + e−2iϕ1 (6 − 4eiϕ) + e−4iϕ1 (−5 + 4eiϕ − 2e2iϕ)] + 2e−2iϕ1e2iϕ3

+C−4e−2iϕ[−1 + e2iϕ3 (6 − 4e−iϕ) + e4iϕ3 (−5 + 4e−iϕ − 2e−2iϕ)]. (B2)

The invariance of the right-hand sides on exchanging (C,ϕ,ϕ1,ϕ3) ↔ (C−1,−ϕ,−ϕ3, − ϕ1) presumably persists in higher order.

On the circle Cc the prefactor of the square bracket in the integral (2.5) reads

1

z′(w)
= −

1

A
h2(1 − eiϕ)2e2iϕ3 [1 + h1/2δ1(ϕ) + hδ2(ϕ) + O(h3/2)], (B3)

where

δ1 = 2C−1(eiϕ3 − e−iϕ3 ), δ2 = −4C−2 + C−2e2iϕ3 (4 − 2e−iϕ + e−2iϕ) + C2e−2iϕ1 (−2eiϕ + e2iϕ), (B4)

and implies

τ (S) ≡
∫

Cc

dw
1

dz/dw
(−)

1

24
S(w)/π =

ih5/2

4πAC
e2iϕ3 I, (B5)

where

I =
∫ 2π

0

dϕ(e−iϕ − 2 + eiϕ)(1 + h1/2δ1 + hδ2 + · · · )(σ0 + h1/2σ1 + hσ2 + · · · )

= h

∫ 2π

0

dϕ(e−iϕ − 2 + eiϕ)(σ2 + δ2σ0) + O(h3/2) = 8πhe−2iϕ1e2iϕ3 . (B6)

Together with Eq. (4.21), this leads to the result for τ (S) in Eq. (4.25).

Next we derive (4.30) of θ (S) for two widely separated needles. Since in Eq. (2.11) we again integrate w counterclockwise

around the circle C = Cc , the two required quantities ζn(w) are conveniently obtained by splitting the w̃ integration paths in

Eq. (2.9) into three parts (see Fig. 2): [α] from w1 or w2 along the outer boundary circle to the point −1; [β] from −1 along the

negative real axis to −Ch1/2; [γ ] from −Ch1/2 along the circle Cc to the point w ≡ Ch1/2 exp(iϕ). This yields

ζn(w) = ζ [α]
n + ζ [β] + ζ [γ ](w), n = 1,2, (B7)
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where

ζ [α]
n /A = O(1/h), ζ [β]/A = −h−3/2(C/2)e−2iϕ3 + O(1/h),

ζ [γ ](w)/A = −h−3/2Ce−2iϕ3

{

[1 − h1/22C−1(eiϕ3 − e−iϕ3 )]

(

1

1 − �
−

1

2

)

+ h

[

4C−2(−1 + e−2iϕ3 )

(

1

1 − �
−

1

2

)

+C−2e2iϕ3

(

1

1 − �
+

1

�
+

1

2

)

+ C2e−2iϕ1

(

1

1 − �
− � −

3

2

)]

+ O(h3/2)

}

, (B8)

and � ≡ eiϕ . By construction, only the first term ζ [α]
n in Eq. (B7) depends on n, and only the third term ζ [γ ](w) depends on w.

The h expansion for θ (S) is obtained by substituting 1/z′(w), S(w), and ζn from Eqs. (B1)–(B4), (B7), and (B8) in Eq. (2.11).

One (readily) finds that ζ [α]
n and (with more work) that ζ [γ ](w) only contribute to θ (S) in orders higher than h2, while ζ [β] makes

the leading contribution θ (S) → ζ [β]τ (S) given in Eq. (4.30), which is of order h2. Here Eqs. (B5) and (B6) have been used in the

last step.

b. A small needle in the half plane

Here we derive, within the h expansion, the contribution −Re θ (T ) to the torque acting on a small needle in the half plane

shown in Eq. (4.52). For the integration path C in Eq (2.11), we use the inner boundary circle w = heiϕ and split the integrations

for ζn(w), as in Eq. (B7), where for [α] the integration is as before, while for [β] and [γ ] it goes from −1 to −h and from −h

to w = heiϕ , respectively. For [γ ] we integrate over the segment of the inner circle, which does not contain the singular point

w = h of z′(w). Instead of ϕ it is convenient to use the deviation χ = ϕ − π from ϕ = π as the integration variable on the inner

circle, and with the help of Eq. (4.47), one obtains

ζ [γ ](w = heiϕ)/|A| ≡ −
1

h

∫ χ

0

dχ ′ 1

4 cos2(χ ′/2)
P̃(χ ′)

→ −
1

2h
tan(χ/2) + h{2(1 − cos χ ) sin(2ϕ1) + [2 sin χ − tan(χ/2)] cos(2ϕ1)}. (B9)

Here P̃ is the product in Eq. (4.47), and we have used its behavior for small h,

P̃(χ ) ≡
∞
∏

k=1

∏

n=1,2 |1 + h2k−1ei(χ−ϕn)|2

|1 + h2keiχ |4
→ 1 − 2h2{[2 sin χ + sin(2χ )] sin(2ϕ1) + [2 cos χ + cos(2χ )] cos(2ϕ1)}. (B10)

To first order in h,

(

ζ
[α]
1 + ζ

[α]
2

)

/(2|A|) = −i(1 + e−2iϕ1 ) − 4he−2iϕ1 sin ϕ1, (B11)

(

ζ
[α]
1 + ζ

[α]
2

2
+ ζ [β]

)/

|A| = −
i

2h
+ ih

(

−1 +
1

2
e2iϕ1 −

5

2
e−2iϕ1

)

, (B12)

so that

Re

(

ζ
[α]
1 + ζ

[α]
2

2
+ ζ [β]

)/

|A| = −3h sin(2ϕ1), (B13)

and Eq. (4.52) then follows from

2π

t(h)
Reθ (T ) ≡ h

∫ π

−π

dχ4 cos2(χ/2)
1

P̃(χ )

{

Re

(

ζ
[α]
1 + ζ

[α]
2

2
+ ζ [β]

)

+ ζ [γ ](heiϕ)

}/

|A|. (B14)

Inserting Eq. (B9) in Eq. (B14), one finds that ζ [γ ] does not contribute to the leading-order result shown on the right-hand side

of Eq. (4.52).

2. Operator expansion for a distant needle

Like a product of two operators in the “operator-product expansion” [44], a small particle can be represented by a sum of

operators with appropriate prefactors [29,57]; see also [17]. Consider a distant needle J, i.e., a needle of short [43] length DJ and

surface universality class HJ, with center at rJ, and directed along the unit vector nJ. Inserting it into the d = 2 Ising model at

the critical point changes the Boltzmann weight of the corresponding field theory by a factor

e−δHJ ∝ 1 + sJ, (B15)
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where sJ is the operator series [35]

sJ =
∑

O=φ,ǫ

A
(HJ)
O

(

DJ

2

)xO{

1 +
(

DJ

2

)2[
1

16xO
�rJ

+
3

8(1 + xO)

(

DJ −
1

2
�rJ

)]}

O(rJ) −
π

2

(

DJ

2

)2

T̃ (J) + · · · . (B16)

Here �r is the Laplacian operator, and the expressions

DJ =
∑

k,ℓ=x,y

nJ,k nJ,ℓ ∂rJ,k
∂rJ,ℓ

(B17)

and

T̃ (J) =
∑

k,ℓ=x,y

nJ,k nJ,ℓ Tkℓ(rJ) (B18)

are the second derivative and the component of the stress tensor [46], respectively, in the needle direction. In Eq. (B16) all the

operators O are subtracted so that their bulk mean values vanish at the critical point, and 〈sJ〉bulk = 0. The operators O = φ and

O = ǫ correspond to the order parameter and energy densities, respectively, and are normalized according to

〈O(r)O(r′)〉bulk = |r − r′|−2xO , (B19)

with xφ = 1/8 and xǫ = 1. The universal quantities A
(HJ)
O in Eq. (B16) are the amplitudes of the corresponding density profiles

〈O(rx,ry)〉uhp = A
(HJ)
O r−xO

y in the upper half plane (uhp) with the boundary at ry = 0 belonging to the surface class HJ. They are

given by [34]

A
(O)
φ = 0, A

(+)
φ = −A

(−)
φ = 21/8, A(O)

ǫ = −A(+)
ǫ = −A(−)

ǫ = 1/2. (B20)

The amplitudes A
(H )
O should not be confused with the prefactor A of the conformal transformation in Sec. III A. Denoting the

angle between the unit vector nJ = (nJ,x,nJ,y) and the x axis by �J and using complex notation,

rx + iry = z, rx − iry = z̄, nx + iny = ei�, (B21)

one obtains the useful relation

T̃ (J) = cos(2�J)Txx(rJ) + sin(2�J)Txy(rJ) = −
1

2π
[e2i�JT (zJ) + e−2i�J T̄ (z̄J)]. (B22)

Here T (z) and T̄ (z̄) are components of the complex stress tensor [34], and Ref. [46] was used in the last step. Note that the

prefactor of the T̃ (J) term in Eq. (B16) is independent of the surface universality class HJ of the needle, i.e., “hyperuniversal”

[65]. The ellipsis in Eq. (B16) represents contributions from higher descendants of 1, φ, ǫ, each of which is compatible with all

symmetries of the needle and which, due to their scaling dimensions, are multiplied by powers of DJ, greater by at least 2 than

the powers shown.

a. Two small needles

For two small needles I and II the free energy of interaction δF is determined by [45]

e−δF/(kBT ) = 1 + 〈sIsII〉bulk, (B23)

where, on using (B16)–(B20),

〈sIsII〉bulk = ±E + H + · · · (B24)

for needle classes OO (upper sign) and O+ (lower sign), while

〈sIsII〉bulk = ±F + E + H + · · · (B25)

for classes ++ (upper sign) and +− (lower sign). Here

E =
DIDII

16

[

1 +
(

DI

8

)2(

−
1

2
�rI

+ 3DI

)

+
(

DII

8

)2(

−
1

2
�rII

+ 3DII

)]

1

|rI − rII|2
=

DIDII

16|rI − rII|2
[1 + 2−3(βI + βII)], (B26)

F = (DIDII)
1/8

[

1 +
D2

I

12

(

�rI
+ DI

)

+
D2

II

12

(

�rII
+ DII

)

]

1

|rI − rII|1/4
=
(

DIDII

|rI − rII|2

)1/8

[1 + 2−6(βI + βII)], (B27)

and the hyperuniversal contribution (see Refs. [34,46]) is

H =
(

π

2

)2(
DIDII

4

)2

〈T̃ (I)T̃ (II)〉bulk = 2−10(DIDII)
2

[

e2i(�I+�II)

(zI − zII)4
+ c.c.

]

. (B28)
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The quantity βJ is defined by

βJ =
D2

J

|rI − rII|2
(−1 + 3{[nJ(rI − rII)]/|rI − rII|}2), (B29)

where the curly bracket depends on the angle between the direction of needle J and the vector between the two needle centers.

As expected, all the terms in the free energy remain unchanged if either needle is rotated about its center by 180◦.

The force (fx,fy) on needle I follows from

(fx, fy) = −
(

∂

∂rI,x

,
∂

∂rI,y

)

δF, (B30)

and the torque � from Eq. (2.7) with �12 ≡ �I.

For illustration, consider the symmetric-perpendicular (letter T) needle configuration with needle centers on the x axis and

rI,x − rII,x > 0, as described in paragraph (A) of Sec. IV A 1, and assume that the two needles have equal lengths DI = DII ≡ D.

Denoting by B = |rI − rII|/D ≡ (rI,x − rII,x)/D ≡ |zI,II|/D the center-to-center distance of the needles in units of D, one finds

E = 2−4B−2 + 2−7B−4, F = B−1/4 + 2−6B−9/4, H = −2−9B−4. (B31)

The component fy of the force on needle I vanishes, and

Dfx/(kBT ) = (d/dB) ln[1 + (+1,−1) × 2−4B−2 + (3,−5) × 2−9B−4] (B32)

for needle classes OO (left entry), O+ (right entry), and, via [66],

Dfx/(kBT ) = (d/dB) ln[1 ± (B−1/4 + 2−6B−9/4) + 2−4B−2 + O(B−4)] (B33)

for classes ++ (upper sign) and +− (lower sign).

As another example, consider needle configurations mirror symmetric about the imaginary axis, which correspond to class

(C) in Sec. IV A 1. By symmetry fy = 0. In terms of the angle α = �34 − �12 ≡ �II − �I enclosed by the two needles,

Eqs. (B26)–(B29) lead to

E = 2−4B−2 + 2−6{−1 + 3[sin(α/2)]2}B−4,

F = B−1/4 + 2−5{−1 + 3[sin(α/2)]2}B−9/4, H = +2−9B−4, (B34)

and

Dfx/(kBT ) = (∂/∂B) ln[1 + (1,−1) × 2−4B−2 + {(−7,9) + (24,−24)[sin(α/2)]2} × 2−9B−4] (B35)

for (OO,O+) and [66]

Dfx/(kBT ) = (∂/∂B) ln[1 ± (B−1/4 + 2−5{−1 + 3[sin(α/2)]2}B−9/4) + 2−4B−2 + O(B−4)] (B36)

for ++ (upper sign) and +− (lower sign). The special cases (i) and (ii) of collinear and symmetric-parallel needles correspond

to α = π and α = 0, respectively. For 0 < α < π needle II exerts a nonvanishing torque � on needle I, where �/(kBT ) =
−(∂/∂�I)δF/(kBT ) is given by the right-hand sides of Eqs. (B35) and (B36) with ∂/∂B replaced with −∂/∂α. For (OO,O+)

one finds from Eq. (B35) that �/(kBT ) = (−1,1)2−73B−4 sin α + O(B−6). The sign of � indicates that the interaction is

dominated by the two closer needle halves.

We also consider case (D) in Sec. IV A 1, in which the two needles of equal length D form angles �12 ≡ �I ≡ � and

�34 = � + π with the vector zI − zII > 0 between their centers on the x axis. For this geometry Eqs. (B23)–(B30) yield

Dfx/(kBT ) = (∂/∂B) ln(1 + S), S = ±[2−4B−2 + {−1 + 3(cos �)2}2−6B−4] + cos(4�)2−9B−4, (B37)

and

Dfy/(kBT ) = [±6 sin(2�) + sin(4�)]2−7B−5/(1 + S) (B38)

for needle classes OO (upper sign) and O+ (lower sign). For needle classes ++ (upper sign) and +− (lower sign) the force

components are

Dfx/(kBT ) = (∂/∂B) ln(1 + S ′),

S ′ = ±[B−1/4 + {−1 + 3(cos �)2}2−5B−9/4] + 2−4B−2 + {−1 + 3(cos �)2}2−6B−4 + cos(4�)2−9B−4, (B39)

and

Dfy/(kBT ) = {±3[sin(2�)]2−5B−13/4 + [6 sin(2�) + sin(4�)]2−7B−5}/(1 + S ′). (B40)
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In Sec. V we found it convenient to rotate this same configuration by an angle π − �, so that needles I and II are

antiparallel and parallel to the real axis and zI − zII = |rI − rII|ei(π−�), implying [rI,x − rII,x, rI,y − rII,y] = |rI − rII| × {sin[� −
(π/2)], cos[� − (π/2)]}. For this orientation,

Dfx/(kBT ) = (±{(2B)−3 + (2B)−5[−5 + 9(cos �)2]} cos � + 2−7B−5 cos(5�))/(1 + S), (B41)

Dfy/(kBT ) = (±{−(2B)−3 + (2B)−5[2 − 9(cos �)2]} sin � − 2−7B−5 sin(5�))/(1 + S), (B42)

for needle universality classes OO (upper sign) and O+ (lower sign), while for ++ (upper sign) and +− (lower sign)

Dfx/(kBT ) = (±{B−5/4 − 2−53B−13/4[11 − 17(cos �)2]}(cos �)/4 + {(2B)−3 + (2B)−5[−5 + 9(cos �)2]} cos �

+2−7B−5 cos(5�))/(1 + S ′), (B43)

Dfy/(kBT ) = (±{−B−5/4 + 2−53B−13/4[3 − 17(cos �)2]}(sin �)/4 + {−(2B)−3 + (2B)−5[2 − 9(cos �)2]} sin �

−2−7B−5 sin(5�))/(1 + S ′). (B44)

As required by symmetry, fx and fy in Eqs. (B37)–(B40) are even and odd in �, respectively, and in Eqs. (B41)–(B44) they are

odd and even in � − (π/2). For the torque � in case (D) our operator expansion yields

�/(kBT ) = −[±6 sin(2�) + sin(4�)]2−8B−4/(1 + S) (B45)

for needle classes OO (upper sign) and O+ (lower sign) and

�/(kBT ) = −{±3[sin(2�)]2−6B−9/4 + [6 sin(2�) + sin(4�)]2−8B−4}/(1 + S ′) (B46)

for needle classes ++ (upper sign) and +− (lower sign).

For two small needles with arbitrary lengths DI,DII and with their centers on the x axis, the SPOE reproduces the leading

force contribution (4.28) to fx and yields

fy/kBT = ±
3

64

(DIDII)
1/8

|zI,II|13/4

[

D2
I sin(2�I) + D2

II sin(2�II)]/(1 ± σ ),

�/kBT = ∓
3

64

(DIDII)
1/8D2

I

|zI,II|9/4
sin(2�I)/(1 ± σ ), (B47)

where σ ≡ (DIDII)
1/8/|zI,II|1/4, for the leading contributions to fy and � in the case of needle universality classes ++ (upper case)

and +− (lower case). The SPOE also reproduces the leading hyperuniversal contributions (4.29) and (4.30) to the force and torque

derived from the h expansion. For the latter quantities this is apparent from Eqs. (4.31) and (B28) since δF (hu)/(kBT ) = −H.

b. A small and a semi-infinite needle

The interaction free energy δF [45] of a small needle I and a semi-infinite needle (semi), i.e., the free energy required to

transfer I from the bulk plane to the plane with the semi-infinite needle, is determined by

e−δF/(kBT ) = 1 + 〈sI〉semi. (B48)

Here sI is the operator series in Eq. (B16), and 〈 〉semi denotes a thermal average in the z = rx + iry plane with a semi-infinite

needle of class Hsemi coinciding with the positive real axis, as in Sec. IV B. Since the semi-infinite needle can be generated from

the boundary of the upper half w plane by the conformal transformation z = w2, the averages of the various operators on the

right-hand side of Eq. (B48) follow from their counterparts in the half plane. From Eqs. (B22) and (2.1) and the vanishing of

〈T (w)〉half plane, we obtain

〈O(rI,x,rI,y)〉semi = A
(Hsemi)
O [2|zI| sin((argzI)/2)]−xO = A

(Hsemi)
O [2|zI|(|zI| − rI,x)]−xO/2 (B49)

and

〈T̃ (I)〉semi = −cos [2(�I − argzI)]/(64π |zI|2), (B50)

where 0 < argzI < 2π and the position vector zI = rI,x + irI,y is defined below Eq. (4.36). The expression

fx − ify

kBT
=

1

1 + 〈sI〉semi

(

∂

∂ rI,x

− i
∂

∂ rI,y

)

〈sI〉semi (B51)

for the force, which follows from Eqs. (B48) and (B16), reproduces, in leading order, the result from the h expansion given below

Eq. (4.44). The reason is that in
(

∂

∂ rI,x

− i
∂

∂ rI,y

)

〈O〉semi = −xO
3zI − |zI|

2zI(zI − |zI|)
〈O〉semi, (B52)
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with 〈O〉semi from Eq. (B49), the same fraction appears on the right-hand side as in Eq. (4.44), and on expressing 〈O〉semi via

(4.42) in terms of h/|z12| ≡ h/DI, one may use that
∑

O=φ,ǫ

A
(HI)
O A

(Hsemi)
O xO (4h)xO → t(h → 0) ≡ {h,−h, (

√
2/8)h1/8,−(

√
2/8)h1/8} (B53)

for {OO,O+,++,+−}. Moreover, in the cases ++ and +−, the denominator on the right - side of (B51) is consistent with

the denominators in Eq. (4.27).

The orientation-dependent contribution to e−δF/(kBT ) of lowest order in the needle length,

2−9(DI/|zI|)2 cos[2(�I − argzI)], (B54)

comes from inserting the stress tensor average (B50) in Eq. (B48), using Eq. (B16), and is independent of the needle classes HI and

Hsemi. For universality classes OO and O+, the contribution (B54) clearly dominates the orientation dependence ∝D
xǫ+2
I = D3

I

coming from the DIO-term in Eq. (B16), provided that the components rI,x and rI,y of zI are of the same order. However, on

approaching the limit rI,x → +∞ with rI,y finite, the contribution from theDIO term approaches the finite orientation dependence

of a needle in the half plane [see Eq. (B55) below], while the contribution (B54) vanishes. For classes ++ and +− the DIO term

contributes an orientation dependence preceded by a power law D
(1/8)+2

I with an exponent which is only slightly larger than the

exponent of the power D2
I in Eq. (B54). Note that Eq. (B54) favors needle orientations parallel and antiparallel to the vector zI

from the midpoint of the finite needle to the finite end of the semi-infinite needle.

c. A small needle in the half plane and in the symmetric-parallel configuration

For a small needle I in the uhp the free energy δF of interaction [45] with the boundary of surface class HS at ry = 0 is

determined by Eq. (B48), with 〈 〉semi replaced with the average 〈 〉uhp in the half plane. The expressions for 〈O〉uhp given above

Eq. (B20) and the vanishing of the stress tensor average imply

e−δF/(kBT ) = 1 +
∑

O=φ,ǫ

A
(HI)
O A

(HS)
O

(

DI

2rI,y

)xO{

1 +
(

DI

2rI,y

)2
1

16
[xO + 1 − 3xO cos(2�I)]

}

. (B55)

Both the force and the torque follow from Eq. (B55).

The force f = −∂δF/∂rI,y with DI and �I fixed is given by

DIf/(kBT ) = (∂/∂B̃) ln
(

1 ± 1
4
(2B̃)−1

{

1 + (2B̃)−2 1
16

[2 − 3 cos(2�I)]
})

(B56)

for classes OO (upper sign) and O+ (lower sign), and by

DIf/(kBT ) = (∂/∂B̃) ln

(

1 ± 21/4(2B̃)−1/8

{

1 + (2B̃)−2 3

27
[3 − cos(2�I)]

}

+
1

4
(2B̃)−1

{

1 + (2B̃)−2 1

16
[2 − 3 cos(2�I)]

})

(B57)

for ++ (upper sign) and +− (lower sign). Here B̃ = rI,y/DI.

The expressions for the torque per kBT , −∂(δF/kBT )/∂�I, follow for the various cases of universality classes HI HS from

the corresponding right-hand sides of Eqs. (B56) and (B57) on replacing (∂/∂B̃) with (∂/∂�I).

Next we consider a small needle in the symmetric-parallel configuration (B) of Fig. 3, assuming DI/c ≪ 1 and DII/c arbitrary,

where c = zI − zII is the distance between the needles. The limits DII/c → ∞ and DII/c ≪ 1 correspond to a small needle in

the half plane and configuration (B) with two small needles of different lengths, respectively. The free energy δF is determined

by Eq. (B48) with 〈 〉semi replaced with the average 〈 〉II in the plane containing needle II. For a needle II with boundary class

HII, centered about the origin and extending along the y axis, the profiles of the order parameter and energy density are given by

(see, e.g., Appendix A 1 in the first paper of Ref. [17])

〈O(rx,0)〉(HII)
II = A

(HII)
O (DII/2)−xO [�(2|rx |/DII)]

xO , (B58)

�(ξ ) ≡ ξ−1(ξ 2 + 1)−1/2, (B59)

for O = φ and O = ǫ, respectively.

Making use of this result and retaining only the the leading monopole contribution in the SPOE, one obtains

DIIfx/(kBT ) = 2(∂/∂ξ ) ln
{

1 ± 1
4
(DI/DII)�(ξ )

}
∣

∣

ξ=2c/DII
(B60)

for classes OO (upper sign), O+ (lower sign) and

DIIfx/(kBT ) = 2(∂/∂ξ ) ln{1 ± 21/4(DI/DII)
1/8[�(ξ )]1/8}|ξ=2c/DII

(B61)

for ++ (upper sign), +− (lower sign).
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APPENDIX C: NONSYMMETRIC PARALLEL NEEDLES

WITH STRONG OVERLAP AND LONG

MIRROR-SYMMETRIC NEEDLES

Consider configuration (D′) of Fig. 3, corresponding to two

needles of equal length oriented parallel to the x axis [54],

in the limit of strong overlap. In this limit the distances |z1 −
z4| = |z2 − z3| between the left ends z1 and z4 and the right

ends z2 and z3 of needles I and II, respectively, are much

smaller than their lengths |z2 − z1| = |z3 − z4| = D, so that

the two needles form boundaries of a long strip of width W =
|r1,y − r4,y | = |r2,y − r3,y |.

First, we evaluate the torque on needle I using Eqs. (2.7) and

(2.8). On integrating closely around needle I, which is located

above needle II, the only contributions to θ in Eq. (2.8) come

from regions with a width of order |z1 − z4| = |z2 − z3| near

the ends of the needles, i.e., near the ends of the strip. The

reason is that (i) 〈T (z)〉 vanishes outside the strip over most

of its length, i.e., over most of the upper edge of needle I, and

(ii) inside the strip 〈T (z)〉 is independent of z and equal to its

value π�/W 2 in an infinite strip, with � from [56]. Thus,

by virtue of the odd factor z − zI = rx − rI,x in Eq. (2.8),

the interval of integration centered about rI,x = (r1,x + r2,x)/2

and comprising nearly all of the lower edge of needle I gives

a vanishing contribution. For large D/W the two end regions

are uncorrelated, and each is equivalent to the end region of a

system of two semi-infinite needles. Replacing z − zI in the left

and right end contributions by −D/2 and D/2, respectively,

we obtain

πθ → −(D/2) limd→+∞

×
[ ∫

CI+(d)

dz〈T (z)〉si+ −
∫

CI−(d)

dz〈T (z)〉si−

]

. (C1)

Here si+ denotes a system of two semi-infinite needles I+
and II+ extending from z1 and z4 to z1 + |∞| and z4 + |∞|,
respectively, while si− is the system of two needles I− and

II− extending from z2 and z3 to z2 − |∞| and z3 − |∞|.
The integration path CI+(d) goes clockwise around the tip

z1 of needle I+, starting at z = z1 + d − i0 and ending at

z = z1 + d + i0. Similarly, CI−(d) goes clockwise around the

tip z2 of needle I−, starting at z = z2 − d + i0 and ending at

z = z2 − d − i0.

On rotating by 180◦, the si− system is mapped onto the

si+ system, with needle I− mapped onto needle II+, i.e., z2

onto z4, and needle II− mapped onto I+, i.e., z3 onto z1. Since

exchanging the universality classes in a two-needle system

does not change the stress tensor average [49], it is the same

for the si+ and rotated si− systems. Moreover, the rotation

changes dz → −dz, while no prefactor arises in front of T ,

and Eq. (C1) yields

πθ → −(D/2) limd→+∞

∫

CI+(d)+CII+(d)

dz〈T (z)〉si+. (C2)

Here the path CII+(d) encircles the tip z4 of needle II+
clockwise, starting at z4 + d − i0 and ending at z4 + d + i0.

The integration path in Eq. (C2) becomes connected, leading

to a vanishing result, if one adds both a vertical segment

from z4 + d + i0 to z1 + d + r4,x − r1,x − i0 and a horizontal

segment from z1 + d + r4,x − r1,x − i0 to z1 + d − i0 to the

integration path. Since for both segments 〈T (z)〉si+ equals its

value inside the infinite strip, and since the vertical segment

leads to a purely imaginary result, the torque � = −kBT Re θ

on needle I is given by −1/π times the contribution of the

horizontal segment, with the result

�

kBT
= −

D

2

(r1,x − r4,x)�

W 2
, (C3)

where � depends on the universality classes of the two needles,

as specified in Ref. [56].

We now calculate the component fx of the force on needle

I due to needle II. For this, it is convenient to place the origin

at the center of reflection of the needle configuration by setting

z3 = −z1, z4 = −z2 and to integrate along a path CI in Eq. (2.4)

midway between the needles along the real axis from z = +∞
to z = −∞, closing the path with a semicircle of infinite radius

which does not contribute to the integral. Since 〈T (z = rx)〉 =
〈T (z = −rx)〉, and since Im〈T (z = rx)〉 vanishes except near

the ends of the needle, the desired integral over Im〈T (z = rx)〉
equals twice the corresponding integral with I and II replaced

with their semi-infinite counterparts I+ and II+ . In this way

we obtain

fx

kBT
=

π

W

(

1

48

1 + 3b − 3b2 − b3

1 + 3b + 3b2 + b3
−

1 − b

1 + b
t̃

)

, (C4)

where t̃ is given in Eq. (3.4). Here b is positive and related by

(r1,x − r4,x)/W =
1

2π
(2 ln b + b − 1/b) (C5)

to the ratio (r1,x − r4,x)/W of the parallel and perpendicular

components of the vector between the two left needle ends.

As expected, fx/(kBT ) is an odd function of r1,x − r4,x and

tends to �/W , −�/W , and 0 in the cases b → +∞, 0, and

1 in which the ratio on the left-hand side of (C5) tends to

+∞,−∞, and 0, respectively.

To derive Eqs. (C4) and (C5), we first generate the geometry

of parallel semi-infinite needles I+ and II+ from the upper half

w plane by means of the conformal transformation [67]

z(w) =
W

π

[

w2

2b
+ w

(

1 −
1

b

)

+
1

4

(

1

b
+ b

)

− 1 − ln
w
√

b
+

iπ

2

]

. (C6)

Together with (C5) this transformation conveniently places the

tips of I+ and II+ symmetrically about the origin, at z = z(1) ≡
z1 = r1,x + iW/2 and z = z(−b) ≡ z4 = −z1, respectively.

The integration path mentioned just above Eq. (C4), which

is midway between the semi-infinite needles I+ and II+ ,

corresponds, according to Eqs. (2.4) and (2.5), to the imaginary

axis of the upper half w plane. Similarly, the integral over

Im〈T (z = rx)〉 corresponds to the integral of a real rational

function of |w| from 0 to +∞ and leads to a force fx on

needle I+ due to II+ which is exactly half of fx in Eq. (C4)

[68].

Finally, we consider the mirror-symmetric needle config-

uration [class (C) of Sec. IV A 1] and argue that in this case

the torque � also increases linearly with the needle length

D for D → ∞. First we place needles I and II so that z2 =
1, z1 = D + 1 and z4 = eiαz2, z3 = eiαz1. We also introduce
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an auxiliary “wedge” configuration of two corresponding

semi-infinite needles which extend from z = 0 to |∞| and

to eiα|∞|, dividing the z plane into two wedges of opening

angles α and 2π − α. To evaluate θ in Eq. (2.8), we choose

CI so that it encircles needle I closely and subtract and add

〈T (z)〉wedge to 〈T (z)〉. This leads to θ = δθ + θ̃ , where

δθ =
∫

CI

dz[〈T (z)〉 − 〈T (z)〉wedge]

{

rx −
(

D

2
+ 1

)}

,

θ̃ =
∫ D+1

1

drx〈T (rx + i0) − T (rx − i0)〉wedge

×
{

rx −
(

D

2
+ 1

)}

. (C7)

Since 〈T (z)〉wedge ∝ z−2 [34], its average in the integral for θ̃

is proportional to r−2
x , and calculating the integral reveals the

leading behavior θ̃ ∝ D for D ≫ 1. Since the square bracket

becomes arbitrarily small, for z = rx + i0 and z = rx − i0, in

the “central” region 1 ≪ rx ≪ D, the quantity δθ represents

the contribution to the torque from the ends of the needles, and

δθ can be written as a sum of two expressions. One of these,

δ<θ , corresponds to semi-infinite needles extending from 1

to |∞| and from eiα to eiα|∞|. The other contribution, δ>θ ,

corresponds to needles extending from 0 to D and from 0 to

eiαD. In the case of δ<θ , the difference 〈T (z)〉 − 〈T (z)〉wedge

for rx ≫ 1 is proportional to r
−2−(2π/α)
x , if z = rx + i0, and to

r
−2−[2π/(2π−α)]
x , if z = rx − i0. This follows from Eqs. (3.7)–

(3.10) for the mirror-symmetric case considered here with

b = 1. Thus, only rx values of order 1 contribute, and δ<θ is

proportional to D for D → ∞. As for δ>θ , its needle geometry

can be mapped either by the dilatation z/D → z to needles of

length 1 or by the inversion D/z → z to the needle geometry

of δ<. Either way, one realizes that δ>θ is of order 1. The

plausible assumption that the D dependence from θ̃ and δ<θ

does not cancel leads to the predictions θ ∝ D and � ∝ D for

D → ∞, in agreement with the numerical results for case (C)

in Sec. V.

For a needle I with ends at ei� and (D + 1)ei� in the upper

half plane, similar arguments also imply � ∝ D for D → ∞.

This is consistent with the numerical results for the torque in

Fig. 11 for � close to π/3.

APPENDIX D: NEEDLES WITH MIXED

BOUNDARY CONDITIONS

1. Half plane with inhomogeneous boundary conditions

We begin with a discussion of 〈T (w)〉u1,u2,...,uN
in the upper

half w plane with boundary conditions on the real axis that

alternate between + and − at the N points u1,u2, . . . ,uN . If,

for example, the boundary condition for −∞ < u < u1 is +,

then it is − for u1 < u < u2, + for u2 < u < u3, etc. The stress

tensor for such mixed boundary conditions is of interest in its

own right and is also the starting point for studying the Casimir

interaction of needles with mixed boundary conditions.

For N = 0, 〈T (w)〉 vanishes, and for N = 1, 2 [48]

〈T (w)〉u1
=

t̃

(w − u1)2
,

〈T (w)〉u1,u2
= t̃

(

1

w − u1

−
1

w − u2

)2

, (D1)

t̃ = t̃+− ≡ 1/2.

For N = 3

〈T (w)〉u1,u2,u3
=

1

(u12)−1 − (u13)−1 + (u23)−1
{[12] − [13] + [23] + (12,3) − (13,2) + (23,1)},

[ab] ≡
〈T (w)〉ua ,ub

uab

, (ab,c) ≡
1

uab

〈T (w)〉uc
, (D2)

and for N = 4

〈T (w)〉u1,u2,u3,u4
=

1

(u12u34)−1 − (u13u24)−1 + (u23u14)−1
([12]/u34 − [13]/u24 + [14]/u23 + [23]/u14 − [24]/u13 + [34]/u12),

(D3)

respectively, where uab = ua − ub. For N an arbitrary even integer �4

〈T (w)〉u1,u2,...,uN
=
(

Pf(N) 1

uij

)−1

×
∂

∂λ
Pf(N)

(

1

uij

+ λ[ij ]

)
∣

∣

∣

∣

λ=0

=
(

Pf(N) 1

uij

)−1

×
∑

1�a<b�N

(−1)a+b+1 [ab] Pf
(N→N−2)
ab

1

uij

. (D4)

Here Pf(N)Aij is the Pfaffian [69] of the N × N antisymmetric matrix with elements Aij = −Aji , the sum in Eq. (D4) contains
1
2
N (N − 1) terms, and Pf

(N→N−2)
ab Aij is the Pfaffian of the (N − 2) × (N − 2) matrix obtained from the N × N matrix by

removing the ath and bth rows and columns. In the limit uN → ∞ Eq. (D4) yields the stress tensor for an arbitrary odd number

N − 1 of switches. Equation (D3) follows from Eq. (D4) for N = 4 and Eq. (D2) from Eq. (D3) in the limit u4 → ∞. Since the

operator T is even in the order parameter field φ, 〈T (w)〉u1,u2,...,uN
is unchanged on exchanging + and − in the boundary conditions.

032130-27



E. EISENRIEGLER AND T. W. BURKHARDT PHYSICAL REVIEW E 94, 032130 (2016)

Equation (D4) follows from the result

〈φ(w1,w̄1) φ(w2,w̄2)〉u1,u2,...,uN
=
(

Pf(N) 1

uij

)−1

〈φ(w1,w̄1) φ(w2,w̄2)〉 Pf(N)

[

1

uij

〈φ(w1,w̄1) φ(w2,w̄2)〉ui ,uj

〈φ(w1,w̄1) φ(w2,w̄2)〉

]

(D5)

of Burkhardt and Guim [70] for the two-point correlations of the order parameter in the presence of mixed boundary conditions. In

this expression the angular brackets without subscripts denote thermal averages for a homogeneous + or − boundary condition.

In the limit that w1 is much closer to w2 than to the boundary, Eq. (D5) must be consistent with the OPE,

φ(w1,w̄1) φ(w2,w̄2) → |w12|−1/4
{

1 − 1
2
|w12|ǫ(w,w̄) + 1

4

[

w2
12T (w) + w̄2

12T̄ (w̄)
]

+ O(|w12|3)
}

,

w12 ≡ w1 − w2, w ≡ (w1 + w2)/2, (D6)

see, e.g., Eq. (2.39) and Sec. III C in Ref. [57]. Substituting the

expansion (D6) in all the averages in Eq. (D5) and comparing

the coefficients of |w12|−1/4w2
12 on the right- and left-hand

sides leads to Eq. (D4).

2. Interaction of semi-infinite needles with mixed

boundary conditions

Under the mapping (3.8) of the upper half w plane onto the

z plane with two embedded semi-infinite needles, the intervals

−∞ < u < −b,−b < u < 0 and 0 < u < 1, 1 < u < +∞,

which we denote by (i), (ii) and (iii), (iv), respectively (not

the same notation as in Fig. 1), map onto the edges of the

semi-infinite needles II and I, respectively. In the notation of

the preceding section, we consider the following distributions

of surface universality classes + and − along the u axis:

(1) N = 0,

(2) N = 2, u1 = −b, u2 = 1,

(3) N = 3, u1 = −b, u2 = 0, u3 = 1,

(4) N = 1, u1 = 0,

(5) N = 1, u1 = 1.

In cases (1) and (4), which were considered in Sec. III B,

the boundary conditions on the two edges of each needle are

the same. In cases (2), (3), and (5), on the other hand, one or

both of the needles has a different boundary condition on each

of its two edges. The stress tensor averages given above allow

us to calculate the force between these needles.

We illustrate the approach in the particularly simple case of

collinear semi-infinite needles generated by the mapping (3.8)

with b = 1 and α = π . Needles I and II occupy the portions

−∞ < x < −|z(1)| = −4B and 0 < x < +∞, respectively,

of the x axis, and the four intervals of the boundary of the w

plane map onto the upper and lower edges of needles I and II

according to

(i) → IIlower, (ii) → IIupper,

(iii) → Iupper, (iv) → Ilower. (D7)

Starting with + at u = −∞, Eq. (D7) implies

(

Iupper IIupper

Ilower IIlower

)

=
(+ +

+ +

)

,

(− −
+ +

)

,

(+ −
− +

)

,

(− +
− +

)

,

(+ +
− +

)

(D8)

in cases (1)–(5), respectively. The force acting on needle I

follows from Eqs. (2.3) and (2.5), the collinear needle mapping

z(w), and the averages 〈T (w)〉... in Eqs. (D1) and (D2). The

component fx is given by [50]

16|z(1)|fx/(kBT ) = 1, 1 + 16t̃ = 9,

−7,1 − 32t̃ = −15, 1 − 8t̃ = −3; t̃ ≡ 1/2, (D9)

in cases (1)–(5), respectively, and the component fy vanishes

in all the cases except (5), where |z(1)|fy/(kBT ) = −2t̃/π ≡
−1/π .

It is remarkable that in case (2) of Eqs. (D8) and (D9), the at-

traction is 9 times stronger than in case (1). To help understand

this result, note that for the same nonvanishing distance |z(1)|
between the needle tips, the free energy is greater in case (2)

than in case (1), since in case (2) the spins change direction near

the needle tips. However, when the tips touch, the free energy

is the same in cases (1) and (2), since the upper and lower

halves of the z plane are decoupled. Thus, the free-energy

varies more rapidly with the tip separation in case (2).

3. Semi-infinite needle perpendicular to an infinite needle

Next we consider a semi-infinite needle I in the upper half

z plane oriented perpendicular to an infinite needle II on the

x axis, as described by Eq. (3.2) with α = π/2. The tip of

needle I is at z = z(1) = 4Ai , and the preimage of the origin

z = 0 is at w = u = −1. Allowing for both a homogeneous

boundary (+ for all x) and a boundary with a “chemical step”

at the origin (i.e., a mixed boundary with + for x < 0 and −
for x > 0), and allowing for different boundary conditions on

the right and left edges of needle I, we consider the six cases

(

Ileft Iright

IIleft IIright

)

=
(

+ +
+ +

)

,

(

+ −
+ −

)

,

(

− +
+ −

)

,

(

− −
+ +

)

,

(

− +
+ +

)

,

(

+ +
+ −

)

. (D10)

The stress tensor averages 〈T (w)〉 in the first five cases are the

five defined in the first paragraph of Sec. II with b = 1 and in

the sixth case N = 2, u1 = −b = −1, u2 = 0, corresponding

to

(i) → IIleft, (ii) → IIright, (iii) → Iright, (iv) → Ileft.

(D11)

Together with Eqs. (3.1), (2.3), and (2.5) this leads to [50]

32|z(1)|fy/(kBT ) = −3, − 3(1 + 16t̃) = −27, 37,

−3 + 128t̃ = 61, 3(−1 + 16t̃) = 21,

−3 + 32t̃ = 13; t̃ ≡ 1/2. (D12)
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The parallel force component fx vanishes in cases (1)–(5), and

in case (6), |z(1)|fx/(kBT ) = −2t̃ ≡ −1. The factor 9 increase

in attraction on going from (1) to (2) has an explanation similar

to the one below Eq. (D9).

In principle, one can calculate the force for arbitrary

configurations of two semi-infinite or infinite needles with an

arbitrary configuration of “chemical steps” with this approach.

As a final example, we consider the Casimir force exerted

on the semi-infinite needle I by the boundary II of the upper

half z plane in the presence of chemical steps at two arbitrary

points,

x1 ≡ X1|z(1)| < x2 ≡ X2|z(1)|, (D13)

which separate the x axis into regions with +,−,+ boundary

conditions. Needle I has boundary condition + on both of

its edges and extends along the y axis from y = |z(1)| to

y = +∞. The arrangement is reminiscent of an atomic-force

microscope probing an inhomogeneous boundary. The force

follows from the mapping (3.2) with α = π/2 and the stress

tensor in Eq. (D1) with N = 2 and u1 = −|u1|, u2 = −|u2|,
where

|uj | = 1 + 2X2
j − 2Xj

√

1 + X2
j ; j = 1,2, (D14)

and the calculation yields

|z(1)|
fx

kBT
= 4t̃







−
2

|u1| − |u2|

[

|u1|3/2

1 + |u1|
−

|u2|3/2

1 + |u2|

]

+
2
∑

j=1

|uj |1/2(|uj | + 3)

2(1 + |uj |)2







,

|z(1)|
fy

kBT
= −

3

32
+ 4t̃

(

1

1 + |u1|
−

1

1 + |u2|

)2

, (D15)

where |uj | is defined in Eq. (D14):

To get a feeling for the result, we discuss two special cases:

(A) Boundary with a single step. In the limit x2 → +∞, i.e.,

|u2| → 0, only the single step on the boundary at x1 remains.

It separates regions with + and − boundary conditions to its

left and right, respectively. The corresponding force on needle

I is

|z(1)|
fx

kBT
= −2t̃

|u1|1/2(3|u1| + 1)

(1 + |u1|)2
,

|z(1)|
fy

kBT
= −

3

32
+ 4t̃

|u1|2

(1 + |u1|)2
, (D16)

with |u1| given by Eq. (D14). While the parallel force

component fx is negative for all x1, the perpendicular

component fy changes sign from positive to negative on

increasing x1 beyond a critical value of the order of |z(1)|.
This is expected, since needle I with its + edges is at-

tracted to the + region and repelled by the − region of

the boundary. For x1 → [−∞, 0,+∞], |z(1)|fx/(kBT ) →
−t̃[3/|X1|, 2, 1/X1] and |z(1)|fy/(kBT ) → −(3/32) + t̃[4 −
(2/X2

1), 1, 1/(4X4
1)]. For x1 = 0 one recovers case (6) defined

below Eq. (D10), and Eq. (D16) reproduces the corresponding

force components given in the paragraph containing Eq. (D12).

For x1 → −∞ and x1 → +∞, Eq. (D16) approaches the force

in cases (4) and (1) of Eq. (D12)

(B) Boundary with two steps at equal distances from the

needle. Since the configuration, with steps at ±x1 separating

the x axis into regions +,−,+ is mirror symmetric about the

y axis, the parallel component fx of the force vanishes. The

perpendicular component follows from Eqs. (D14) and (D15),

which yield |u2| = 1/|u1| and

|z(1)|
fy

kBT
= −

3

32
+ 4t̃

X2
1

1 + X2
1

. (D17)

For x1 = 0 the boundary with two steps reduces to a ho-

mogeneous + boundary, and we are back to case (1) of

Eqs. (D10) and (D12). For a large distance between the steps,

|x1| ≫ |z(1)|, Eq. (D17) yields

|z(1)|
fy

kBT
→ −

3

32
+ 4t̃ −

4t̃

X2
1

. (D18)

Here the first two terms on the right-hand side represent the

force exerted on the needle by a homogeneous − boundary, and

the third term is contributed by the + boundaries beyond the

two distant steps. As expected, the latter contribution is twice

the corresponding contribution −2t̃/X2
1 of a single distant

step, given below Eq. (D16).

For switches of the boundary universality class between +
and O instead of + and −, 〈T (w)〉u1

and 〈T (w)〉u1,u2
are again

given by Eq. (D1), [48], but with t̃ = t̃+O = 1/16 instead of

t̃ = t̃+− = 1/2. Thus, all of the results of this Appendix which

are based on the stress tensor for N = 1 or N = 2 hold, with

the appropriate value of t̃ , for +O as well as +− switches in

the boundary conditions.
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