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Casimir interaction of rodlike particles in a two-dimensional critical system
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We consider the fluctuation-induced interaction of two thin, rodlike particles, or “needles,” immersed in a
two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane
containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and
torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we
utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length
we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of
elementary functions, and we also obtain analytical results for the force and torque between needles of finite
length with separation much greater than their length. Evaluating formulas in our approach numerically for
several needle geometries and surface universality classes, we study the full crossover from small to large values
of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long
needles and with predictions of the small-particle operator expansion, respectively.
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I. INTRODUCTION

Two objects immersed in a near-critical fluid, for example
colloidal particles in a binary liquid mixture near the critical
point of miscibility, experience a long-range, fluctuation-
induced force [1-6]. Changes in the positions of the objects
alter the space available to the critically fluctuating fluid, and
hence its free energy, giving rise to an effective interaction of
the objects. In analogy with the Casimir effect in quantum
electrodynamics [7-10], this is known as the critical or
thermodynamic Casimir interaction.

The critical Casimir interaction displays a high degree of
universality, i.e., is largely independent of microscopic details
[3-6]. It depends only on universal properties of the fluid, the
universality class of the boundary between the fluid and the
immersed particles, and geometrical properties of the particles,
such as their size, shape, and relative position.

Fluctuations of the superfluid order parameter also lead
to critical Casimir forces, and this has been detected in
wetting films of “He and *He /*He mixtures [11-15]. Particles
immersed in a solution [16—-19] of long, flexible polymer
chains or particles to which a polymer chain is attached [19,20]
experience a similar Casimir interaction due to fluctuations
of the polymers [21]. Shape fluctuations of membranes or
fluid surfaces lead to a Casimir-type interaction of embedded
particles [22-24].

Binary liquid mixtures belong to the Ising universality
class. The surfaces of the immersed particles generally attract
one of the two components of the mixture preferentially,
corresponding to (+ or —) boundary conditions in the Ising
model. A surface prepared to suppress the preference cor-
responds to free-spin boundary conditions [25]. In the ter-
minology of surface critical phenomena, these two surface
universality classes [26] are known as “normal” (4 or —) and
“ordinary” (O).

In studies of critical Casimir interactions, systems with
planar walls and systems with spherical particles have received
the most attention [3,13,27-29]. For nonspherical particles the
Casimir interaction depends on their orientation as well as their
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separation; i.e., there is a torque as well as a force. Recently, the
universal scaling form of the Casimir interaction of a prolate
uniaxial ellipsoid and a planar wall, with pairs ++ or +—
of boundary conditions on the two surfaces, was calculated
within mean-field theory by Kondrat et al. [30].

In this paper we derive exact results for the Casimir
interaction of two rodlike particles in a two-dimensional
critical system in the Ising universality class. The following
considerations provide some motivation:

(i) Recent experiments suggest that biological membranes
are tuned close to a critical point of miscibility in two di-
mensions [31]. The possibility of critical Casimir interactions
between inclusions in the membrane has been studied by
Machta et al. [32,33].

(i1) Systems at the critical point are generally invariant not
only under scale transformations, but also under conformal
or angle-preserving coordinate transformations [34]. This has
far-reaching consequences for the Casimir interaction of two
particles, especially in two spatial dimensions [29,35,36].

In general dimension d the region outside two spherical
particles with arbitrary radii and separation can be conformally
mapped onto the region bounded by two concentric spheres
using homogeneous translations, rotations, and dilatations
and the inversion. Burkhardt, Eisenriegler, and Ritschel have
shown [29] that this mapping determines the asymptotic form
of the Casimir interaction for both large and small separation
of the spheres in an arbitrary critical medium, not necessarily
Ising-like, in arbitrary spatial dimension d.

Ind = 2 the conformal group is much richer than in general
d. Conformal mappings are generated by analytic functions,
and the doubly connected region outside two particles of
arbitrary shape can be conformally mapped onto the annulus
bounded by two concentric circles or, equivalently, onto the
surface of a cylinder of finite circumference and length.
The Casimir interaction of the particles in an infinite, two-
dimensional, Ising-like critical medium follows from the free
energy of the critical Ising model on the cylindrical surface
[29,34-36], which Cardy [37] has derived in analytic form for
all aspect ratios and for all pairs of boundary conditions +,
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—, and O at the ends of the cylindrical surface. Burkhardt and
Eisenriegler [29] and Machta et al. [32] followed this route
in evaluating the Casimir interaction of two particles with
circular shape. Bimonte et al. [36] have given a general analysis
of asymptotic properties of the Casimir interaction in critical
two-dimensional conformal field theories for two particles of
arbitrary shape, based on the mapping of the portion of the
plane outside the particles onto an annulus.

Being interested in the Casimir torque as well as the force,
we consider anisotropic particles. The rodlike particles in our
study have negligible width compared with their length, and we
model each particle as a segment of a straight line. This shape is
extremely simple and highly anisotropic. Following Ref. [35]
we refer to the particles as “needles” [38]. The approach we
use, which makes use of conformal mappings, is not limited
to these needles but is applicable, in principle, to particles in
two dimensions of arbitrary shape.

In Sec. II and Appendix A we show how the force and
torque between the particles are related to the stress tensor
[34], which for our purpose is the quantity most convenient to
work with [29,35,36].

In Sec. III we calculate the critical Casimir force between
a semi-infinite needle and an infinite needle and between two
semi-infinite needles, with arbitrary relative position. These
are instructive cases to begin with since the calculations can
be carried out analytically, without special functions. The key
step is to generate by a conformal mapping z(w) the complex
z plane with the two embedded needles from the upper half
w plane with the corresponding needles on the real axis. The
approach is not limited to needles with homogeneous boundary
conditions. In addition to the homogeneous case, we consider
needles whose two sides prefer different components of the
mixture and also a semi-infinite needle in the presence of a
piecewise homogeneous boundary corresponding to “chemical
steps” [39-41].

In Sec. IV we discuss the more complicated Schwarz-
Christoffel transformation required for two needles of finite
length. It generates the complex z plane, with an embedded
needle between points z; and z, and a second needle between
points z3 and z4, from an annulus, with circular needles on the
outer and inner boundaries.

In Sec. V detailed results for the Casimir force and torque
between needles of finite length are presented for several
configurations of the needles. The results are consistent
with predictions of Vasilyev er al. [35], who have studied
the Casimir interaction of the needles with Monte Carlo
simulations and calculated them in certain symmetric cases
with conformal invariance methods [42], but without the
generality of the approach considered below. The results of
Sec. V are also asymptotically consistent with the predictions
for infinite or semi-infinite needles derived in Sec. III. Since
the torque diverges for needles of infinite length, checking
its asymptotic behavior is more subtle and is addressed in
Appendix C.

For large separation of the needles in comparison with
their lengths [43], the numerical results of Sec. V reproduce
the predictions of the “small-particle operator expansion”
(SPOE). This expansion, which is reviewed in Appendix B,
has proved to be extremely useful in studies of the critical
Casimir interaction and is similar in spirit to the operator
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product expansion [44] in field theory. Large needle separation
corresponds to a small ratio of inner to outer radius of the
annulus, and the corresponding expansions in Sec. IV and
Appendix B allow us to check the agreement with the SPOE
analytically.

The final section of the paper, Sec. VI, contains a summary
and concluding remarks.

II. FORCE, TORQUE, AND THE STRESS TENSOR

In this section we consider two needles I and II in the
Z =ry +ir, plane and present the formalism for calculating
the force (fx, f,) and the torque © acting on needle I due to
needle II. The force and torque follow from the changes § F of
the interaction free energy [45] on infinitesimally translating
and rotating needle I with needle II kept fixed. As reviewed
in Appendix A, these changes can be expressed in terms of
the thermal averages (Ty,(r.,ry)) of the Cartesian [46] stress
tensor field or its complex [34] counterpart (7 (z)) for the
given needle configuration. In subsequent sections the stress
tensor and the corresponding force and torque are calculated
for several two-needle geometries of interest. In each case
(T (z)) is obtained through a conformal mapping z(w) of a
simpler geometry in the w plane, for which (T (w)) is known,
onto the desired geometry in the z plane, using the fundamental
transformation property [34]

1 1
T = —|(T - — . 2.1
T@) = o [< ) = 5 S(w)} @1
Here S(w) is the Schwarzian derivative

Sy = 1T W) = G/ W)

[/ (w)]?
2 1 2
Ed_lnﬂ__ ilnﬁ ’ (2.2)
dw? dw 2\dw dw

and the primes denote derivatives.
According to Eq. (A11) the force components are given by
(fx, fy)/(kgT) = —(Im, Re), (2.3)
where
1 1 ,
T=— [ dz(T(2)) = —/dwz W) T@). 24
T G T Je

The integration path Cj in the z plane encloses needle I in
a clockwise fashion, leaving needle II outside, and C is the
corresponding path in the w plane, which maps onto C; under
the conformal transformation z(w). With the help of Eq. (2.1),
T can be expressed as

1 1 1
— _ — (1) (S
T = - /cdwz’(w) [(T(w)) 24S(w):| =t 4+ ™.

(2.5)

The torque ® on a needle I with fixed length, extending
from z; to z,, and forming an angle ®; = &, = arg(z; — z2)

with the x axis is given by
O =—(0/0P1sF, (2.6)

where the derivative is taken for an infinitesimal rotation of
needle I about its midpoint with the midpoint z; = % (z1 +22)
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fixed. According to Egs. (2.6) and (A12), the torque may be
written as

® = —kpTReb, 2.7)

where

1
0 = - dz(T(2))(z — z1) (2.8)

G

and the integration path C; is the same as in Eq. (2.4).
To express ® in terms of (7' (w)) and z(w), we rewrite the
integral in Eq. (2.8) using Eq. (2.1) and the relation

Iz = / dw(dz/dD) = ¢(w); £=12, (2.9)

(3

where wy, is the point in the w plane which maps onto needle
end point z,. Together with (2.7), this yields

© = —kyTRe(0'" +0), (2.10)
where
(Qm> - L/ dw (_mw)) )[cl(w)+;z(w)1.
69) = 2 Jo " dzjdw \ - L sw)
2.11)

Note that the contributions 7 in Eq. (2.5) and 6 in
Eq. (2.11) which involve the Schwarzian derivative are purely
geometrical and do not depend on the surface universality
classes of the needles.

III. INTERACTIONS OF INFINITE
AND SEMI-INFINITE NEEDLES

A. Force between a semi-infinite and an infinite needle

In this and subsequent sections we use the notation z =
ry +iry and w = p, + ip, for the complex variables z and w
and their real and imaginary parts.

The conformal transformation z(w), where

Z(w) = Ae w1 (w — 1),

) 1
zZ(w) = nAe’“w“/”( d + —),
T—a o

3.1

(3.2)

A is a positive real constant, and 0 < o < 7, considered in
Sec. 12.1 of Kober [47], maps the upper half w plane, with
semi-infinite needles along the positive and negative u axes,
onto the upper half z plane with two transformed needles.
Needle II, the image of the negative u axis, is infinitely long
and corresponds to the entire x axis. Needle I, the image of the
positive u axis, is semi-infinite and extends from the point

2

z(1) = Ae'® (3.3)

a(r — )

to 0o, forming an angle o with the x axis.
The integrand in expressions (2.3)—(2.5) for the Casimir
force follows from Eqgs. (2.2) and (3.1) and the corresponding
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i (0,0,3.%)
216 (3.4)

(T(w)) = i w—l,

for (OO, + +, + —,0+) boundary conditions on the two
needles and is given by

e—ia wot/rr—l
4812 A (w — 1)
—2Q2m —a)(wr + )w + 7’

—a? — 487 % (w — 1)?].

2

Zw)(T(@) =

[ar — x)w

(3.5)

In Eq. (2.4) integrating clockwise along the edges of needle I
in the z plane (path C;) corresponds to integrating along the u
axis from w = 0 to 400 in the w plane, passing above the pole
at w = 1 (path C). Combining Egs. (2.4) and (3.5), evaluating
the integral, and making use of Egs. (2.3) and (3.3), we obtain
fx = 0, as expected since needle 1I is infinite, and [50]

1
ksT — 96r,(1)

Here ry(1) =Im[z(1)] is the distance of the tip of needle
I from needle II, and we have used the relation r,(1) =
m? A(sinar)/[a(r — )], which follows from Eq. (3.3).

As expected, f, in Eq. (3.6) is an even function of the
deviation y = o — %JT from perpendicular orientation of the
needles and diverges in the limit y — j:%n, corresponding to
parallel needles. From the values of 7 in Eq.(3.4), it follows
that the force between the needles is attractive for O O and ++
boundaries and repulsive for +— and O+ boundaries, with the
strongest force in the 4+— case.

Qr — o) + «) — 96737
a(mr — o) ’

T = (3.6)

B. Force between two semi-infinite needles

The conformal transformation w(z), where

Z(w) = Bew™ " Y(w — D(w + b), (3.7)

iii

iii

iii

FIG. 1. The configuration of the semi-infinite needles I [with end
point z(1)] and II (with end point 0) in the full z plane, shown on the
left, is generated by the conformal mapping (3.8) from the upper half
w plane with needles I and II on the positive and negative real axis,
respectively, shown on the right. The two edges of needles I and II in
the z plane and their preimages in the upper half w plane are denoted
by i, ii and iv, v, respectively. The neighborhoods of z = oo denoted
by iii and vi correspond to the neighborhoods of w = oo and w = 0,
respectively, in the upper half w plane. The integration contour C;
enclosing needle I and its preimage C play a role in the calculation of
the force and torque, as discussed in Secs. II and III.
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needles along the positive and negative u axes, onto the full
z plane with two embedded semi-infinite needles. Needle II,
the image of the negative u axis, coincides with the positive x

. b—1 b
zZ(w) = nB[e""w“/”“ (% + + _)

T —o T —a aw

b h_1 1 axis. Needle I, the image of the positive u axis, extends from
—p/7H] (277— - + —)i|, 3.8) the point
—a —o o
(1) = _Br? @ — b2 — @)]e’® + b~ %"t 21 — o — ba)

N a(r —a)2r —a)
where B and b are positive real constants and 0 < o < 7,

considered in Sec. 12.3 of Kober [47] and shown schematically 3.9)
in Fig. 1, maps the upper half w plane, with semi-infinite to 0o, forming an angle o with needle II.
|
The integrand in expressions (2.3)—(2.5) for the Casimir force follows from Eqgs. (2.2), (3.7), and (3.4) and is given by
e*ia wa/nfl
SNT Q) = e o T T 1 hp (O ~ 6 —@w’ +2(1 ~ baGr —aw’
H—aQRr —a)+ 2b(57 + 4w — 2a2) — b*a2w — ot)]u)2
—2b(1 — b)27w — a)(w + a)w — bA(? — &?) + 4872 (w — 1)*(w + b)?}. (3.10)

Integrating along path C in Eq. (2.4) again amounts to integrating along the u axis from w = 0 to 400 in the w plane, passing
above the pole at w = 1. Combining Egs. (2.4) and (3.10), evaluating the integral, and making use of Eq. (2.3), we obtain [50]

hif !

YT TTRT T 9672B(1 + b) sin

+e 9P 2 — ) + ) + 237 — )T + )b + a(37 — a)b* — 967%(1 + b)*F]},

where the parameters B and b are related to the end point
rx(1),7,(1) of needle I by Eq. (3.9).

Since needle II corresponds to the positive x axis, one
expects to recover the results of the preceding section, in
which needle II is infinite, in the limit r.(1) — +00 with
ry(1) and o fixed. According to Eq. (3.9) this limit is achieved
on substituting 5 = A/b in the equation and then taking the
limit b — oo with A fixed. In this limit the derivative (3.7)
reduces to Eq. (3.1), the integrand (3.10) reduces to (3.5), and
the Casimir force (3.11) reduces to (3.6).

C. Needles with nonuniform boundary conditions

All of the results of Sec. III B are based on the stress tensor
(T (w)) of Eq. (3.4) for boundary conditions that change only
at w = 0 and are uniform along the positive and the negative
u axis, which are the preimages of the two edges of needles I
and II, respectively (see Fig. 1). Thus, the needles I and II of
Sec. III B are allowed to have different boundary conditions,
but each needle has the same boundary condition along both of
its edges. Beginning instead with the stress tensor (T'(w)) =
f/(w — 1)? for boundary conditions that change only at w = 1
(see again Fig. 1) enables us to study the case in which needle
I has different universality classes along its two edges while II
has the same boundary condition on both edges.

In Appendix D we derive (T (w)) for an arbitrary number
of changes between surface universality classes + and — at
arbitrary points on the u axis. Using this result, we evaluate
the interaction between two semi-infinite needles both with
different edges, and, on using the transformation z(w) of
Sec. III A, the interaction of a semi-infinite needle and an
infinite boundary line with “chemical steps” [39].

{[a(Bm — &) + 237 — a)(m 4+ )b + 27 — a)(w + a)b* — 967°(1 + b)*7]
o

@3.11)

(
IV. INTERACTIONS OF NEEDLES OF FINITE LENGTH

In this section the approach for infinite and semi-infinite
needles is extended to needles of finite length. The region
outside two finite needles, which is doubly connected, is
generated from an annulus bounded by two concentric circles,
for which the thermal average of the stress tensor is known.
The mapping is illustrated schematically in Fig. 2.

z plane

w plane

FIG. 2. The configuration of two finite needles in the full z plane,
shown on the left, is generated by the conformal mapping with
derivative (4.2) from the annulus # < |w| < 1 shown on the right.
The labels 1, 2 and 3, 4 denote the end points z;, z, and z3, z4 of
needles I and II in the z plane, respectively, and their preimages wy,
w, and ws, wy. The edges of needles I and II in the z plane and their
preimages in the w plane are denoted by i, ii and iii, iv, respectively.
The point w = ¢ = Ch'/? in the annulus labeled by v is mapped onto
z = 0o by the transformation. The integration contour C; enclosing
needle I and its preimage C as well as the concentric circle C, passing
through the point w = c¢ play arole in the calculation of the force and
torque, as discussed in Secs. II and IV and Appendix B 1 a.
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A. Two needles of finite length
1. Conformal mapping

An arbitrary configuration of two non-overlapping needles
I and II with finite lengths Dy and Dy in the z plane can be
generated by a conformal transformation z(w) of the Schwarz-
Christoffel type, which maps the interior of the annulus & <
|lw| < 1 in the w = |w|e’® plane onto the region outside the
two needles in the z plane. As illustrated in Fig. 2, the outer and

J

n [Ti_, #10@7i) " In(w /we)]
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inner boundary circles of the annulus map onto needles I and
I1, respectively, and the points w; = €' ,wy = /%> and w3 =
he'% ,ws = he'* map onto the end points z;, z, and z3, 24
of the needles. The corresponding mapping is a special case
of the mapping onto the region outside two nonoverlapping
polygons derived by Akhiezer in 1928 and given at the end of
Sec. 48 of Ref. [51]. In the special case in which the polygons
reduce to needles, the mapping z(w) has the derivative

Z(w)=—

w? 92Q2mi) " n(w/c)] 9 Q2mi) ! In(we)]’

4.1

in terms of the elliptic theta functions ¢, with the nome 4 and constants p and ¢ defined in Ref. [51].
Substituting ¢ = Ch'/2, w = (w w2w3w4)_1/2A in Eq. (4.1), and using the expression for ¥ in Table IX of [51], we obtain

the useful product representation

[To, (1 = h%2w /we)(1 — h*we/w)

Z(w) =

A o0
ﬁ ]!:[1 (1 _ h2k75/2w/c)2(1 _ h2k+1/2c/w)2(1 _ h2k73/2wc)2[1 _ h2k71/2/(wc)]2'

4.2)

We will see that & < 1 for needles short in comparison with their separation, and in this regime the representation (4.2) is
especially convenient [52].

In the mapping with derivative (4.2), shown schematically in Fig. 2, the complex constant A in Eq. (4.2) corresponds to a
homogeneous rotation and dilatation, and the positive real constant C, with h!/? < C < h~!/2, characterizes the value Ch'/? of
w, which is mapped to z = co. The segments i, ii and iii, iv of the outer and inner boundary circles in Fig. 2, which are separated
by w;, wy and w3, wy, respectively, map onto the two edges of needles I and Il in the z plane. This follows from the changes dz
corresponding to displacements dw = d(e'¥) and dw = hd(e'?) along the outer and inner boundaries of the annulus, for which

Eq. (4.2) implies

iA .
dz = —C2e™ ') G 01,02)P(@; 91,925 @3,045 C; h)dg

h
and

respectively. Here

and

“4.3)
iA .
dz = ’ G(0; 93,040 P(@; 03,045 1,925 C 75 h)dg, 4.4
G(p; pr,px) = (1 — ! 70)(1 — £!V790))
— _fe—irte2 iy PP G, P T PK @5)
2 2

0 _ 1 — h%keilo—en)|2 _ 1 — h2k—1pilo—0n)|2

anl,Z | | 1_[mf3,4 | | (46)

Po; ¢1.92; ¢3,04; C; h) = H

k=1

which is always positive.

As @ varies, the argument of dz in Eq. (4.3) stays constant
except at ¢ = ¢, and ¢ = ¢, where, due to the factor
G(p; ¢1,92), it changes by . This corresponds to constant
slopes along the two edges of needle I with end points z; and
Z». Analogous results for needle II follow from Eq. (4.4).

Moreover, moving counterclockwise inside the annulus
close to the outer and inner boundary circle corresponds to
encircling needle I clockwise and needle II counterclockwise,
respectively, in the z plane (see Fig. 2). This is most easily
verified near the needle tips z,, where, due to Eq. (4.2),
dz = 7/(w)dw = const x (w — w,)dw, since w — w, turns
180° clockwise and counterclockwise, respectively, on passing
point w, on the outer and inner boundary.

|1 _ h2k—1/2C—lei<p|4|1 _ th—S/ZCei(p|4 ’

Without loss of generality and for later convenience we

assume

<@ <mw, £=1,234, 4.7
for the arguments of the four preimages w, of the needle
ends.

The mapping z = z(w) is required to be single valued,
so that the displacement z(w,) — z(wp) = fuli“ (dz/dw)dw for
any two points w, and wj in the annulus is independent of
the integration path. For w, = w, the integral must vanish,
even if the path encloses the inner boundary circle or the
singularity at w = Ch'/2. To ensure this, we require that the
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integrals

Qo=m d = d
[ (f) o [ ()
o=—T7 dw w=ei?® Qg=—1 dw w=he'¢

(4.8)

around the outer and inner boundary circles vanish. On
inserting (4.3)—(4.6) in Eq. (4.8) and discarding ¢-independent
complex factors, the conditions (4.8) imply the vanishing of
two real functions of the six real parameters ¢y, ...,04,C,h.
This leaves four independent parameters (apart from the
complex constant A), consistent with the four degrees of
freedom needed to specify (apart from homogeneous transla-
tions, rotations, and dilatations) a configuration of two needles,
for example, the two lengths and the two angles the needles
form with the vector between their midpoints. According to
Egs. (4.3) and (4.4), the second of the conditions (4.8) follows
from the first on exchanging the pairs ¢;,¢, and ¢3,¢4 and
replacing C with C~!. This leads from one allowed parameter
set to another. Explicit expressions for small & are given in
Egs. (4.16) below.
In conformity with above remarks, we use the notation

idp _ o i®
21 — 22 =212 = |212[€'"? = Dye'™,

23— 24 = 234 = |z34]e'® = Dy’ ™, 4.9)
(z1+z22/2=2z, (3+24)/2=12n,
and
21— 210 = 211 4.10)

for the needle vectors, the positions of their midpoints, and
their separation vector.

The needle vectors z12 and z34 follow from the first and
second integrals in Eq. (4.8) on replacing the lower and
upper limits —7 and 7 with ¢, and ¢; and with ¢4 and g3,
respectively. This yields

210 = e PTG A/ YCN (91,9023 93,945 C; ),

234 = (1 A/ )CN (3,015 91,925 C'5 h), (4.11)
where, on using Eqgs. (4.5) and (4.6),
N(@1.92; 93,045 C; h)
= e 250n(p) — ) P(91,02; @3.945 C5 h). (4.12)
Here
P(p1,902; 03,04; C; h)
b1 .
— 4C / dgsin 2—#
@2 2
x sin & _(pZP(w; 01,902, 03,04; C; h)|,  (4.13)

2

where P is given in Eq. (4.6).
For the angle enclosed by the two needles, Eqs. (4.11)—
(4.13) imply the simple relation

o (Pr=®) _ ,—i(@1+prtestes)/2 sgn(@; — o) sgn(@s — @4).

(4.14)
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Note that in the sector (4.7) the complex numbers
e~ +e)/2 and =i @ste)/2 and the signs of ¢; — ¢, and
@3 — @4 are uniquely determined by w;,w; and by ws,wy,
respectively.

For the ratio of needle lengths, Eqgs. (4.11)—(4.13) yield

Dy/Dy = |z12l/1z34]
= P(p1,92; 93,025 C; h)/ P(@3,04; 01,025 C™'5 ),
4.15)

so that exchanging the pairs ¢;,¢, and ¢3,¢4 and replac-
ing C with C -1 changes Dy/Dy to its inverse. For the
special parameter sets C =1 with either ¢3 = ¢;, @4 =
@y Or o3 = —@|, ¢a = —¢o, the two needles have equal
lengths |z12| = |z34|. For the second set this follows from
Eq. (4.6), which implies P(@; ¢1,02; —¢1,—¢2; C; h) =
P(=¢; —p1,— @25 ¢1.92; C; h), yielding P(@1,¢2; —¢1,— 23
I3 h) = P(—¢1,—@2; ¢1,925 15 D).

We mention another, rather obvious, property of
the transformation (4.2): Changing the parameters from
(@1,902; 93,04, C; h) 10 (—@1,—@2; —@3,—@4; C; h),i.e., chang-
ing all four w, to w}, leads from one single-valued mapping
to another, in which the needle configuration is changed from
(212,234 Z111) 10 (275,2345 21 p)> assuming A is real. Here and
below an asterisk denotes complex conjugation.

Except for the enclosed angle it is, in general, not obvious
how to choose the parameters in the transformation (4.2) to
generate a given configuration of the two needles. Here we list
some simple classes (A)—(E) of needle configurations which
require only a parameter search in a reduced subspace. We
choose the vector between the needle centers to be parallel to
the real axis, so that z;;y = |zi,n|, with needle I to the right of
needle II, and refer to the ratios |zj2|/|zin| and |z34|/|zim] as
the “reduced needle lengths.”

(A) Symmetric-perpendicular configurations of two nee-
dles of arbitrary reduced lengths with the symmetry of the
letter T, corresponding to Fig. 3(A). To be specific, we
consider the needle vectors zj, = i|zi2| and z34 = —|z34].
These configurations can be generated from parameters in
the subspace (¢1,92,93,¢4) = (—|@1l,|¢1],0,7), where wy =
w}, w3 = h, wy = —h. The reason is that on choosing A real,
the integrals over (4.2) from w = w, to w = w3 and from w =
wi tow = w3 (and likewise those from w = w, to w = w4 and
from w = w; to w = wy) are complex conjugates, implying
the properties zo — z3 = (z1 — z3)* and 22 — z4 = (21 — z4)™.
Since the expression multiplying d¢ in Eq. (4.4) is an odd
function of ¢, the integral in Eq. (4.8) around the inner circle
vanishes for all values of ¢, C, and h. The requirement that
the integral over the outer circle vanish implies a relation
@1 = ¥ (C,h),leaving C and & free to generate given values for
the two reduced needle lengths. Note, finally, that the general
enclosed angle relation (4.14) is satisfied, since both of its
sides equal —i in the above subspace of parameters in the
annulus and for the needle configuration in which el — i,
el = —1.

(B) Symmetric-parallel configurations of two needles with
arbitrary reduced lengths perpendicular to the vector between
their centers, corresponding to Fig. 3(B). To be specific,
we choose z1p = i|z12| and z34 = i|z34], so that the needles
are parallel to the imaginary axis. These configurations are
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FIG. 3. Simple needle configurations describedin Sec. IV A 1, for
which the six mapping parameters C, h, ¢i,..., ¢4 of the conformal

mapping are restricted to subspaces of lower dimension. The labels
1, 2 and 3, 4 denote the end points z,, z, and z3, z4 of needles I and I,
respectively. Configurations (A)—(D) are oriented as in Sec. IVA 1,
with the line from the midpoint zy; of needle II to the midpoint z;
of needle I parallel to the x or horizontal axis. Configuration (D)
is the same as (D), apart from a rotation to orient the needles along
the x axis. Our results for the force and torque in configurations (A),
(B), (C), and (D'), as functions of the needle lengths Dy, Dy, D, the
minimum separation c, the angle o between the needles, and the
distances W and V, are shown in Figs. 4-8.

generated by (¢1,02,93.04) = (—lp1l.le1l, — l@sl.|@s)), ie.,
by wy = w}, ws = wj, since, as in case (A), for real values
of the parameter A there is reflection symmetry about the real
axis, and the integrals over (4.2) from w = w, to w = w3
and from w = w; to w = wy (and likewise those from w =
wy to w = wy and from w = w; to w = ws) are complex
conjugates, implying the properties z, — z3 = (21 — z4)* and
22 — z4 = (21 — z3)*. The vanishing of the two integrals (4.8)
implies relations ¢; = x(C,h) and ¢3 = w(C,h), and the two
parameters C and & can be adjusted to generate the two reduced
needle lengths. The enclosed angle relation (4.14) is satisfied,
with both sides equal to 1.

(C) Configurations of two needles which are mirror sym-
metric about the imaginary axis, corresponding to Fig. 3(C).
Here 712 = |z12]€®2, 734 = |z12]|e/™~®12) = —z%,. The nee-
dles have the same arbitrary reduced length, and with no
loss of generality the angle o = — 2®;, between them
can be restricted to values between 0 and .

@2 = @1 — 1 sgn(e; — ¢2) + G(o1; ¢35 C; h),

where

@1 = @3 — 7 sgn(es — 4) + Glg3; 13 C 15 h),

PHYSICAL REVIEW E 94, 032130 (2016)

(D) Nonsymmetric parallel needles of equal length, cor-
responding to Fig. 3(D). Here z1» = |z12]e'®? = —z34 (see
[53] for an alternate representation), where the angle @, is
arbitrary [54].

The needle configurations (C) and (D) are generated by
C =1 in both cases and by ¢3 = ¢, ¢4 = ¢, in case (C)
and @3 = —¢1, 94 = —¢@; in case (D). In both subspaces the
lengths |z12|, |z34] of the two needles are equal for arbitrary
values of the three parameters ¢, ¢, and &, and the two
conditions in Eq. (4.8) reduce to a single condition [see the
remarks below Eqgs. (4.15) and (4.8), respectively]. This leaves
two free parameters, which can be adjusted to generate the
given common reduced length of the needles and the angle
@, needle I forms with the distance vector zyj between the
needle midpoints. In case (C) the enclosed angle relation (4.14)
predicts ¢*®? = —e~i@1+¢2)_and in case (D) it is satisfied
since both sides equal —1.

Typical configurations from classes (A)—(D) are shown in
Fig. 3. Classes (B), (C), and (D) encompass two particularly
simple needle configurations for which the conformal mapping
can be found in the literature.

(i) Collinear needles of equal length with @, =0 and
&34 = 7 are generated by (w;, wy, w3, we) = (1, —1, h, —h)
and C = 1, which is a special case of both (C) and (D). In this
case the two conditions (4.8) are satisfied, since both integrands
(4.3) and (4.4) are odd functions of ¢. The reduced needle
length is determined by the parameter 4. The corresponding
conformal transformation z(w) is discussed in Refs. [47,51].

(i1) Symmetric-parallel needles of equal length with @, =
&34 = m/2,1.e., aconfiguration with the symmetry of the letter
H: This needle geometry is generated by (¢1, @2, @3, ¢4) =
(—le1l, le1l, —le1l, le1]) and C =1 and is a special case of
(B), (C), and (D) [53]. The two parameters |¢;| and & are cho-
sen to satisfy the two identical conditions (4.8) and to generate
a given reduced needle length. The conformal transformation
leading to this needle configuration is considered in some detail
in Refs. [47,51].

(E) Widely separated needles. Needles with lengths
|z12], |z34] much smaller than their separation |zyy| are gen-
erated by Eq. (4.2) on choosing C of order 1 and & < 1.
While detailed results for the mapping in cases (A)—(D) for
needles of arbitrary length can only be obtained numerically
(see Sec. V), for widely separated needles analytic results
may be derived by expanding in terms of the small parameter
h'/2. Using the two conditions (4.8) to express ¢, and ¢
in terms of the four free parameters ¢, @3, C, and i leads
to

(4.16)

G(p1; 03, C; h) = 4n'2C sin ¢ +4hC? sin(2¢1) — 4h3/2{%C3(7 — 16cos? ;) sing; + C'[2sin @3 cos(p; — @3) — singol]},

(4.17)

apart from terms of order 42. Equations (4.16) reflect the symmetry mentioned below Eq. (4.8) and are consistent with our
assumption (4.7). The dependence of the needle configuration on the four free parameters is given by

212
- = R((plvgpi%cv h)’
2Ll

Z — *
== = —R(g3, 91, C™ ),
V4RI

(4.18)
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where
R(p1, @3, C, h) = 4Ch'?e {1 — 2ih'/>C sing, — h[C72(1 4+ 2¢%9) + C?*] 4+ O(h*/?)}. (4.19)

The symmetry embodied in Egs. (4.18), which we have checked within the /& expansion, is expected to hold for arbitrary 4. Starting
from a set (¢1,¢2; ¢3,94; C,h) of six parameters obeying the two conditions (4.8) and replacing it with (¢3,¢4; @1,02; C L h)
corresponds to reflecting the two needle configuration about the symmetry axis of the needle midpoints, i.e., about the imaginary
axis of the z plane if we choose z; = |z1| and z; = —|z1| by adjusting A appropriately. This is consistent with the above discussion
of the reflection-invariant needle configuration (C), for which C = 1.

For the ratio of needle vectors, Eqgs. (4.18) and (4.19) imply

212

e C?[1 + 21(C? cos® o — C 2 cos p3)lexp (—ifor + @3 + 7 + J[G(g13 93 Csh) + G(3: 013 C~ 15 )1}) + O(h?),
34

(4.20)

where the phase factor and modulus are consistent with the enclosed angle relation (4.14) and the ratio of needle lengths (4.15),
respectively. We also note the relation

o = A h—3/2Ce—2i(p3{1 + Zhl/ZC—l(_ei(p3 + e—i(p3) +h[C—2(262i(ﬂ3 -3 +4e—2i(p3) + C2(1 + 2e—Zi(p] )] + O(h3/2)}’ (421)

which determines the value of A needed to generate a given ziir = |zrul-

2. Force and torque

The force and torque on needle I due to needle II can be evaluated using Egs. (2.2)—(2.5) and (2.7)—(2.11), respectively. The
stress tensor average in the annulus [55,56] was determined by Cardy [37] and can be written as

1
(T(w)) = (T (W))annutus = mt(h)v 4.22)
where
d o0
t(h) = h—In <{1 +[(Si1 + S21)/2. 811, S Sl [ ] - hz")_l) (4.23)
n=1
for the combinations O O, ++, +—, O+ of universality classes of the two needles [49]. Here
o0
Spy = Spglh) = 2_2: ROV g % sin % (sin %” sin ”4—q>, (4.24)

where the series converges for 4 < 1. For the integration path C in Eqgs. (2.5) and (2.11), which goes around the inner boundary
circle counterclockwise, it is most convenient to use the circle C, given by w = Ch'/2¢'?, which passes through the preimage
w = Ch'/? of 7 = co.

Unlike the force and torque contributions 7 and 7 in Eqs. (2.5) and (2.11), which depend, via Eqs. (4.22)—(4.24), on the
surface universality classes of the two needles, the contributions 7 and ), which involve z'(w) and the Schwarzian derivative
(2.2), are solely determined by the geometric configuration of the needles and in this sense “hyperuniversal.” This was already
mentioned at the end of Sec. II, and it applies to the semi-infinite and infinite needles of Sec. III. The occurrence of a hyperuniversal
term in the free energy of interaction of a noncircular particle with other particles in a near-critical two-dimensional system is
well known from the SPOE. As discussed in Refs. [17,57] and Appendix B 2, the hyperuniversal interaction arises from the stress
tensor in the operator expansion corresponding to the particle, in our case a needle. The hyperuniversal term in the expansion
depends on the orientation of the needle, is proportional to the square of its length (which is the smallest power involving its
orientation dependence), and reproduces the results corresponding to the & — 0 contributions of 7 and #®, as we show in
Eqgs. (4.29)-(4.31).

In general, the force vector is neither parallel nor antiparallel to the vector zyy between the needle midpoints, as seen,
for example, in Eq. (4.29). However, for the symmetric-perpendicular and -parallel configurations in (A) and (B) and for the
mirror-symmetric configurations (C), the force clearly points along zy; or —zyy. Detailed numerical results for force and torque
in cases (A)—(D) are reported in Sec. V. Here we give a few analytic results for the case (E) of two short needles or, equivalently,
two widely separated needles.

According to Egs. (4.18) and (4.19), this regime corresponds to small /, and in leading order

(D= 2 1), 1 = 2o, (425)
2L 2L
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for the two contributions to the force on needle I in Eq. (2.3). For more details, see Eqs. (B1)-(B6) in Appendix B. On using
(4.23) and (4.24), we obtain

t(h <1) = [h,—h] (4.26)
for needle pairs of type [O O, O+], while for pairs of type [++,+—]

th < 1) = % V20" /(1 4+ V21'18), =218 /(1 — V2R3, (4.27)

for h values which are small compared to 1 without requiring h'/® to be small. The force ( f+, f,) on needle I in Eq. (2.3) is thus
dominated by the contribution from ‘7). In the remainder of this section we again assume that zyj; = |zyy/, so that the distance
vector zrj; between needle centers is parallel to the x axis. Using h — |z12]|z34]/ (16|212,11|) due to (4.18) and (4.19), one finds

1 I DiDy | 1(DiDp)'/8 DiDp)'/®
felkpT = — x|::|:— 1Du - 1 (DD /(11—( - “1)/4 )} (4.28)

|zL 8 lztul>” 4 |zpul'* |zLml

and f)/(kgT) = O for the force components in leading order. Here the upper and lower signs describe the needle universality
classes [0 O,++] and [O+,+—], respectively, and Dy = |z»| and Dy = |z34| are the needle lengths introduced in Eq. (4.9).
For needles with equal (unequal) universality classes the force is antiparallel (parallel) to the distance vector zjp, i.e., attractive
(repulsive), as expected. As in a multipole expansion, the shape anisotropy does not appear in the leading “monopole” contribution
(4.28), in which the force is independent of the needle orientations ®, and P34, but it appears in higher order in the needle
lengths. Unlike the corresponding higher-order contributions from 77), which also depend on the needle universality classes,
the contributions from 7® are hyperuniversal, as mentioned above. Equations (4.18) and (4.19) imply e~'¥* — ¢/®2 and
€% — —e!® and the lowest-order hyperuniversal term, given by the second expression in Eq. (4.25), leads to

212

D;iD
(&, 1) [ tesT) = = e, ‘|‘5 {cos[2(P1 + P3g)], — sin[2(P1; + Pag)]}. (4.29)

As expected, the force is unchanged on rotating a needle through 180°.
We now turn from Eq. (4.29) to the hyperuniversal contribution —Re 8 to the reduced torque ® /(kzT), introduced in
Egs. (2.7)-(2.11). Calculating 8 by means of the mapping (4.2), one obtains

212

‘ DD
0 — —in*eH et Rep® — 28|1 I|I4 sin[2(®P12 + ®34)] (4.30)
L

in leading order. For more details, see the paragraph containing Eqs. (B7) and (B8) in Appendix B.
A detailed discussion of the force and torque for two short needles, based on the SPOE, is given in Appendix B 2 a. With this
entirely different approach we confirm the leading behavior (4.28) for the force and obtain

D} D} 1
8F(h”)/(k3T) = _—élo < 2i(Prt®i) c.c.) 4.31)
71 i

for the hyperuniversal (hu) contribution to the free energy of interaction [45] of the needles, which agrees with the results for the
force components in Eq. (4.29) and the torque in Eq. (4.30).

B. Interaction of a finite and a semi-infinite needle

Consider the case in which needle 12 has a finite length Dy = |z,| but needle 34 is semi-infinite, with z3 = z. and z4 = oo.

This needle geometry is generated by Eq. (4.2) in the limit C = h'/? and w4 = h in which the preimages w4 and Ch!'/? of z = z4
and z = oo, respectively, coincide, so that
(1 _h2k 3 —t%w)(l _h2k+l t(pe/w) %2 iy 2% i
dw) =5 ]‘[[ P T wp (1 = a) [T —=r* 2wyt — ke jw) |. (4.32)
n=1,2
This implies
— pP-leile=ve)2 I, |1 — hZeilo—en)|2
— —ige =1,2
dz = (dp)iA e G(g; §01,§02)11_[1 T T (4.33)
and
A ' . — )2 00 1| _ K2k pilp—pe) |2 3 1 — h2k=1,i(p—pn)|2
¢ = —(dg) 2 w2 SML@ — 0)/2] I1 | oo " (4.34)
h 4sin*(¢/2) |1 — h2keiv|6

k=1
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for displacements dw = d(e'?) and dw = hd(e'¥) around the
outer and inner boundaries of the annulus, respectively. Here
G is defined in Eq. (4.5), and w3 = w, = he'% is the preimage
of z.. The behavior (4.34) near ¢ = 0 implies that the semi-
infinite needle extends from z = z. to z = s|oo| along the
tangential unit vector s = —i(A/|A|)e’"“’°/2 sgng. with @, =
@3 obeying (4.7). For convenience we choose the semi-infinite
needle to coincide with the positive real axis, i.e., ze = 0 and
s = 1, so that

A = i|Ale¥/*sgng.. (4.35)
From Eq. (4.14) we obtain
el = —e ! WHRT son(g) — go) sgnge,  (4.36)

since @34 = 7, ¢4 = 0, and @3 = @e.

Apart from homogeneous dilatations, the needle config-
uration is determined by three parameters: the length ratio
|z12]/]z1] and the two angles argz; and ®;, which z; and
z12 form with the semi-infinite needle. Here z; = i, +iry,
is the vector from z. =0 to the midpoint of needle 12.
Correspondingly, there are, apart from |A|, three independent
mapping parameters. Since the derivative dz/dw is analytic in
the interior of the annulus, imposing the requirement

Touter = / dw(dz/dw) =10 4.37)
Couler

on the four parameters %, ¢, ¢z, . ensures that the mapping

z = z(w) is single valued.

Now consider the case of a finite needle which is much
shorter than its distance from the closest point of the semi-
infinite needle, so that |z12|*> < |z1/(|z1] — r1.). Explicit results
for the force and torque in this regime can be obtained by
expanding in terms of & and are expected to agree with the
SPOE. In the remainder of this section this is checked in
leading order.

For small & the constraint (4.37) reads

02 = @1 — wsgn(g) — ¢2)

+2h[3sing; — sin(pr — @)l + O(h?),  (4.38)

yielding in terms of independent parameters the needle
configuration

|A|

A e 439
4h|singe/2[° (4.39)

21

210 = —4|Alie 1 e/ 25gng,, (4.40)

to leading order in 4. Since ie™'¢' equals e~/ 7%)/2sgn(¢p; —
@) in leading order [see Eq. (4.16)], Eq. (4.40) is consistent
with (4.36). Equations (4.39) and (4.40) allow us to express
|Al, h, @1, . in terms of needle parameters, and we note that

[A] — |z12]/4 (4.41)
and
1
Lb el (4.42)
8 V2lzil(lzt] — rix)

for use below.
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The force (f, fy) on the 12 needle follows from Egs. (2.3)
and (2.5) on substituting the derivative (4.32), integrating along
a circle infinitesimally larger than the inner boundary circle of
the annulus, avoiding the singularity at w = w, = he'%.

The leading contribution comes from (7’ and is given by

1 ei<pe/2(ei<pe -3)

(T)
T /t(h) — 4)z1|  sin(ge/2) ' (@49
yielding
3z1— |z
[(fe = i)/ UenT)V/1(h) = iw/1(h) — _ﬁ’
(4.44)

since z1/|z1| — e~i%: see Eq. (4.39). The leading contribution
to the force follows from Eq. (4.44) on replacing t(h) with
t(h <« 1) in Egs. (4.26) and (4.27) and on replacing & with
the right-hand side of Eq. (4.42). As in Eq. (4.28), the leading
contribution is independent of the orientation @1, of the small
needle. The leading dependence on orientation comes from 7%
in Eq. (2.5) in higher order in /. In Appendix B 2 b we use the
SPOE to calculate the leading isotropic and angle-dependent
contributions to the force and the leading contribution to the
torque on the 12 needle. The SPOE prediction is in complete
agreement with the h-expansion result for the force given in
Eq. (4.44).

C. Interaction of a finite and an infinite needle

On setting w3 = wy = Ch'/? = h in Eq. (4.2), both z3 and
Z4 become infinite, so that the 34 needle takes the form of an
infinite needle or boundary line. For A = —i|A]|, the infinite
needle coincides with the boundary Imz = 0 of the upper half
plane. The derivative of the transformation is given by

l o0
dw)=—ilAlz [ ]
k=1

Hn:l,z(l — W22~ ion)(1 — hKelo Jw)
(1 — h2=3w)2(1 — h2k+1 /w)? )

(4.45)
so that
dz = (dp)|AlG(¢; ¢1,92)
o0 / —
]‘[n_l ) [1— h2k el wn)|2
— : 4.46
x ]1:[1 Il _ h2k—lez(p|4 ( )
and
dz = —(d )|A| !
T sin2(e)2)
00 2k—1 i(p—@,)|2
Hn=1,2|1_h el
<[] TyErE (4.47)

k=1

for displacements dw = d(e?) and dw = hd(e'¢) along the
outer and inner boundary circles, respectively. Thus, a coun-
terclockwise path around the inner circle corresponds to a path
along the real axis from 400 to —00, and a counterclockwise
path around the outer circle to a clockwise path around the 12
needle along its edges. The function G is defined by Eq. (4.5).
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As in the case (4.32) of a finite needle interacting with
a semi-infinite needle, the constraint /,,., = 0 ensures that
the mapping Egs. (4.45) is single valued, so that only two of
the three parameters 4, ¢;, ¢, are independent. They can be
adjusted to fix the angle @, between needle and boundary and
the ratio of the length |z;,| of the needle and its distance to the
boundary. According to the argument leading to Eq. (4.14),
the unit vector characterizing the direction of z, is given by

e = M2 it 20001 — ).

(4.48)
[Z12]

1. Distant needle

A needle far from the boundary in comparison with its
length corresponds to & < 1. The products in Egs. (4.45)—
(4.47) can be expanded in powers of 4, and Eq. (4.37) yields

@2 = @1 — msgn(ey — @2) + g(e1; h),

g(p1;h) = 4hsing, + 4h%sinQRe;) + O®),  (4.49)
which is consistent with the constraint (4.38) in Sec. IV B on
setting ¢, = O there. For the vector z;, between the ends of
the needle and for the distance ry , = Imz; = Im(z; + z2)/2 of
the needle center from the boundary, one obtains

210 — 4|A|(1 + 2h? cos? (pl)e*i{%Jr[*ﬂJrg(wl;h)]/Z} 4 (9(h3),

Ly —> @{1 + 2h*[1 + 2 cose1)] + Oh?)}.

- (4.50)

The direction of the needle, given by the phase factor of z;,
in Eq. (4.50), is consistent with the general expression on the
right-hand side of Eq. (4.48).

2. Force and torque

The force and the torque which the boundary exerts on
needle 12 are again given by Egs. (2.3)—(2.5) and (2.7)—(2.11)
together with (4.22)—(4.24), except that now dz/dw and S(w)
follow from (4.45). It is most convenient to use the integration
path C in Egs. (2.5) and (2.11) along the inner boundary
circle of the annulus. Since there is no force f, parallel to
the boundary, the imaginary part of T must vanish.

For a distant needle the force is determined by ) for
h < 1. In this regime Egs. (2.5), (4.22), and (4.47) imply
™ /t(h) — 2h/|A|, and using Eqgs. (4.50), one obtains

, 1
L - ——th<k]l), h—> ?,

4.51)
kBT Ly Ly

where 7(h < 1) is taken from Egs. (4.26), and (4.27). As
expected, this result is in agreement with (4.44) in Sec. IVB
for ry — 4+00. An orientation dependence of the needle
only appears in higher order and is determined explicitly
for the needle geometry considered here with the SPOE in
Appendix B 2 c. As for ¥, we have checked that its leading
h power is higher than /3, so that 7 does not contain a term
proportional to |z15|%/ rﬁ y- This is consistent with the vanishing
of the stress-tensor average in the half plane and the absence
in the SPOE of a hyperuniversal contribution o|z5|* to the
free energy, force, and torque.
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FIG. 4. Component f, of the force exerted on needle I by needle
II for needles of equal length Dy = Dy = D in the symmetric-
perpendicular configuration (A) shown in Fig. 3. Here ¢ = z1 — z4
is the distance from the right tip of needle II to the midpoint of needle
I. The points indicate the numerical predictions of our exact approach,
and the two curves show the asymptotic forms derived in the text for
large and small ¢/D. The force component f, and the torque vanish
due to symmetry. For more details, see Sec. V.
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The leading contribution to the torque ® is determined by
6 and is given by

©)
—— — —Ref'" — 6h%sin2p)) t(h < 1);
kT

Sin(2p) — sin@by), h — 122!
87’1,},

(4.52)

where the & expansion of Re8™)/t(h) is derived in Ap-
pendix B 1 b and Egs. (4.48)—(4.50) have been used. Equa-
tions (4.51) and (4.52) are consistent with the SPOE results in
Appendix B 2 c.
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V. RESULTS FOR ARBITRARY NEEDLE LENGTHS

We now consider some simple needle geometries in which
the needle length is neither very large nor very small compared
to the distance between the needles. Calculating the force and
torque requires the full machinery described in Sec. IV for
arbitrary values of the mapping parameter % in the interval
0 < h < 1. Unlike the completely analytic approaches for
semi-infinite needles in Sec. III and for short needles (small &
expansion) in Sec. IV, we now resort to numerical evaluation,
which, however, yields results over the entire range from small
to large needle lengths [58]. Actually, we restrict our attention
to needle configurations for which the six mapping parameters
are restricted to subspaces of lower dimension. These include
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FIG. 5. Component f, of the force exerted on needle I by needle II for needles with separation ¢ = z; — zy in the symmetric-parallel
configuration (B) in Fig. 3. The results in the left and right columns are for needles of the same length D; = Dy = D and for needles with
different lengths, Dy = D and Dy = c, respectively. The points indicate the numerical predictions of our exact approach, and the curves show
the asymptotic forms derived in the text for large and small D/c. The force component f, and the torque vanish due to symmetry. For more

details, see Sec. V.
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FIG. 6. Force f, and torque © exerted on needle I by needle II for needles of equal length D in the mirror-symmetric configuration (C)
shown in Fig. 3. Here ¢ = z, — z4 is the distance between the closest points of the needles, and the angle o between them is /5. The points
indicate the numerical predictions of our exact approach, and the two curves show the asymptotic forms derived in the text for large and small
D/c. The force component f, vanishes due to symmetry. For more details, see Sec. V.

configurations (A)—(D) introduced between Egs. (4.15) and
(4.16) and the configurations of a finite needle in the half
plane, discussed in Sec. IV C:

(A) For the symmetric-perpendicular configuration (A)
defined in Sec. IVA1 and shown in Fig. 3, the force
component f, and the torque on needle I vanish, due to
symmetry. The component f; is attractive (f, < 0) for needle
university classes O O, + + and repulsive (f, > 0) for classes
+ —,0+. We consider the case of equal needle lengths Dy =
Dy = D, in which Df, /(kgT), apart from the universality
classes, only depends on ¢ = ¢/D, where ¢ = z; — z4 is the
minimum distance between the needles. In Fig. 4 the numerical
results of our exact approach for Df,/(kgT) in the region
1072 < & < 10? are indicated by full points. For large and
small ¢ there is excellent agreement with the asymptotic

behavior (B32) and (B33) for short needles and with the results
of Sec. III for semi-infinite needles, respectively. In the latter
limit, ¢ — 0, and the force f, becomes independent of D and
is given by f, in Eq. (3.6) witho = /2 and r, (1) = c.

(B) In the symmetric-parallel configuration (B) defined in
Sec. IV A1 and shown in Fig. 3, the force component f, and
the torque on needle I also vanish by symmetry. We have
evaluated f, numerically in two special cases, B1 and B2. In
case B1, which is denoted by (ii) in Sec. IV A 1 and is a special
case of classes (B), (C), and (D) [53], both needles have the
same length D; = Dy = D. In case B2 we denote the length
Dy of needle I by D and choose the length Dy of needle 11 equal
to the needle separation ¢ = z; — zy1. The dependence of cf,, on
D/c in both cases, B1 and B2, is shown in Fig. 5. Again our
numerical results (points) merge nicely with the asymptotic
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of our exact approach, and the two curves show the asymptotic forms derived in the text for large and small D/ W. For more details, see Sec. V.

expressions (curves) for small and large D/c. For small D/c
these follow from Egs. (B35) and (B36) with ¢ = 0 in case
B1 and from Egs. (B59)—(B61) in case B2. For large D/c
case B1 reduces to an infinitely long strip, and cf, /(kgT) —
AD/c, where A = (i — 1/48), with 7 given in Eq. (3.4), is
the corresponding Casimir amplitude [56]. For large D /c case
B2 reduces to a needle II parallel to the boundary of a half
plane, a geometry considered in the last two paragraphs of this
section, and cfy /(kgT) is the same as Df, /(kgT) for B=1
and ® = 0 in Fig. 10. Note that in case B2 the dependence
of f, is nonmonotonic and displays a maximum. We attribute
the decrease of c| f,| for large increasing D/c to the fact that
for finite D both sides of needle I contribute to the interaction,
while for D = oo it is only the side which faces needle II.

For the case in which the length of needle II is much smaller
than the needle separation ¢, one can derive the complete
nonmonotonic dependence on D/c, including the maximum,
analytically using Egs. (B58)—(B61).

(C) For the mirror-symmetric configuration (C) defined in
Sec. IVA1 and shown in Fig. 3, the force component f,
vanishes for all angles 7 — 2®;;, = o between the needles.
The component f, and the torque ® are nonzero, with the
exception of the torque at « = 0 and 7. Figure 6 shows f;
and O for needles forming an angle @ = /5 = 36° and with
lengths ranging from short to long. The quantities cf /(kgT)
and ®/(kgT) are plotted as functions of D/c = 1/¢, where
the minimum separation ¢ = 7,4 = 7, — 74 of the needles is
the distance between the two lower needle ends. For small D/c
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the numerical data (solid points) merge nicely with the results
of the small needle expansion given in Eqs. (B35) and (B36).
For large D/c the data for the (D-independent) force are in
excellent agreement with the corresponding force for mirror-
symmetric semi-infinite needles following from Egs. (3.9) and
(3.11) with b = 1. The torque appears to vary linearly with D
for large D, in agreement with the analytic argument at the
end of Appendix C.

(D) Next we consider the force and torque on needles
of equal length in the nonsymmetric parallel configuration
defined in Sec. IV A 1. We use the orientation (D) illustrated
in Fig. 3(D’), where the needles are parallel to the x axis [54],
with z34 = —z12 = D. The configuration is uniquely specified
by the value of D, the vertical separation of the needles
W =y, — ra,y, and the relative horizontal displacement V =
r4x — r1 x. For the fixed ratio V/W = 1.4, Figs. 7 and 8 show
our numerical results (points) for Wf, /(kgT), Wf,/(kgT),
and O /(kpT) as functions of D/ W. For small D/ W we show
the small needle prediction following from Egs. (B41)—(B46).
For large D/W the perpendicular force component f, is
dominated by the usual Casimir force for a long strip [34],
so that Wf, /(kgT) — (D/W)A with A from [56]. This and
the behavior of the (D-independent) parallel force component
fx and of the torque ® for large D/ W, derived in Egs. (C4),
(C5), and (C3), respectively, are also indicated by solid lines
in the figures.

Finally, we consider the force and torque on a single needle
in the upper half plane for various ratios B = ry, y/D of the
distance of the needle center from the boundary to the needle
length and for various angles ®;, = ® between the needle and
the boundary. The torque vanishes by symmetry for & = 0 and
® = +7/2. The results for B = 10and 0 < ® < 7/2, shown
in Fig. 9, are in perfect agreement with the predictions (B56)
and (B57) of the operator expansion for a distant needle. In
this case f, — fylo=r/4 and ®© are odd and even functions,
respectively, of ® — w/4. Figure 10 shows corresponding
results for the intermediate distance ratio B = 1, where the
minimum distance between the needle and the boundary,
which corresponds to the perpendicular orientation ® = /2,
is half the length of the needle. As expected, there are
significant deviations from our operator expansion of low
order, in particular for the force near ® = m/2. As implied
by Egs. (B55) and (B56) and illustrated in Fig. 10, the
convergence of the SPOE with increasing reduced distance B
is slowest for the mixed boundary condition (4—). This is not
surprising, since for this combination of boundary conditions
the perturbation of one needle due to the other is the most
severe, with, in Ising language, the spins forced to reverse
direction.

For B < 1/2 the needle touches the boundary before
attaining the perpendicular orientation, and the force and
torque diverge. Figure 11 shows the case B = +/3/4 = 0.433
for 0 < ® < /3, with diverging results as & approaches
the angle 7 /3 and the distance r; , = %D(sin% — sin ®) of
the needle tip z, from the boundary shrinks to zero. Since the
divergence is a local effect, for 1, , <« D one expects f to
be independent of D and the same as the force (3.6) on a
semi-infinite needle with the same end point r, , = (1) and
angle ® = « in the notation of Sec. III A. From Eq. (3.6) we
obtain Df, / kT ~ —(5 —2167)(Z — @) for the leading

PHYSICAL REVIEW E 94, 032130 (2016)
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FIG. 8. Torque ® on needle I for the same nonsymmetric parallel
configuration considered in Fig. 7.

divergent term, which is plotted in Fig. 11. The exact numerical
data (points) in the figure are in excellent agreement with this
prediction, and for all four sets of boundary conditions it gives
an astonishingly good fit over the entire range 0 < & < 7/3.
Heuristic arguments (see last two paragraphs of Appendix C)
suggest that the torque also diverges as (5 — ®)~!, and the
exact numerical data in Fig. 11 appear to support this.
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FIG. 9. Dependence of the force f, and torque ® on a needle of length D in the upper half plane on the angle ® between the needle and
the boundary. The ratio B = r,y/D, where ry, is the distance of the needle midpoint from the boundary, has the value B = 10. The points
indicate numerical predictions from the exact approach, and the curves show the analytic results (B56) and (B57) of the operator expansion for
a distant needle, i.e., for large B. The force component f, vanishes. For more details see Sec. V.

VI. SUMMARY AND CONCLUDING REMARKS

The Casimir interaction of particles immersed in a binary
liquid mixture near a critical point of miscibility has a long
range and universal character, and nonspherical particles
experience both a force and a torque. We consider the
interaction of two needle-shaped particles right at the critical
point of a two-dimensional fluid in the Ising universality class.
While particular needle configurations have been considered
before [35], the approach of this paper allows us to calculate
the interaction for two needles of arbitrary lengths, separa-
tions, and orientations for various combinations of surface
universality classes [26].

As in earlier work [17,29,35,36,57], we utilize the con-
formal invariance of two-dimensional critical systems and
generate the needle geometry of interest from a simpler

standard geometry by means of a conformal mapping. As
outlined in Sec. II and Appendix A, we work with the stress
tensor, which has well-understood conformal transformation
properties, is known in the simple standard geometry, and
determines the force and torque in the needle geometry of
interest.

In Secs. IIT A and III B we consider arbitrary configurations
of an infinite and a semi-infinite needle and of two semi-infinite
needles and obtain the results for the force given in Egs. (3.3),
(3.6), (3.9), and (3.11), respectively. The simple form of the
force follows from the simplicity of the stress tensor in the
standard geometry and of the mapping generating the needles.
The region outside the needles is simply connected, and the
standard geometry is the upper half plane with the two needles
on the x axis. In Sec. III C and Appendix D we show how
to extend the approach to needles with different boundary

032130-16



CASIMIR INTERACTION OF RODLIKE PARTICLES IN A ...

Df,(00)/kgT

01 02 03 04 08 P
-0.11¢
~0.12
~0.13 .

~0.14 °

-0.15

-0.16

Df (++)/kgT

0.1 0.2 0.3 0.4 0.5 P

~0.131

-0.14
-0.15
-0.16 °
-0.17

-0.18

D, (+-)/kgT
2.8
2.6 °

24 °
22
2.0 °

0.1 0.2 0.3 0.4 0.5

o/t

Df, (O+)/kgT
0.20

O/t

01 02 03 04 05

PHYSICAL REVIEW E 94, 032130 (2016)

O(00)/kgT
0.015¢

0.010} S

0.005}

€
0.1 0.2 0.3 0.4 0.5 bim

O(++)/kgT
0.015¢

0.010+
0.005 1

0.1 02 03 0.4 0.5 @i

O(+-)/kgT

O.‘1 O.‘2 O:3
-0.05¢
-0.10¢}
-0.15¢} o
-0.201 L

-0.25¢

O(0+)/kgT

/7T

o®

0.1 0.2 0.3 0.4

-0.005

-0.010 °

-0.015 [}

FIG. 10. Same as Fig. 9, except that the ratio B has the value B = 1 instead of 10. Since the distant needle condition B >> 1 is not satisfied,
the numerical predictions from the exact approach (points) deviate significantly from the predictions (curves) of the operator expansion for a

distant needle. For more details, see Sec. V.

conditions on the two sides, for example, a needle along the
x axis with its upper edge in the class — and its lower edge
in the class +. Explicit results are given for the force between
(i) two semi-infinite collinear needles [see Eqs. (D7)-(D9)]
and (ii) a semi-infinite needle perpendicular to the boundary
of the half plane. In the latter case we also consider a boundary
with “chemical steps” [40], which separate the x axis into
segments with 4+ and — boundary conditions, and our results
for the normal and lateral forces acting on the needle in the case
of one and two chemical steps are given in Eqs. (D10)-(D18)
[59]. In this context we have obtained new results (D2)—(D4)
for the stress tensor in the half plane with an inhomogeneous
boundary [60].

For needles of finite length the space bounded by the
needles is doubly connected, and the standard geometry is

an annulus with circular needles on its boundaries. The stress
tensor in the annulus is known from Cardy’s work [37,55]
and is summarized in Egs. (4.22)—(4.24). The mapping onto
the two-needle geometry is a special case of Akhiezer’s
formula [51] for mapping the annulus onto the region outside
two nonoverlapping polygons, and its derivative is given by
Eq. (4.2) in Sec. IV A. Two conditions (4.8) are imposed
to ensure that the mapping is single valued. Searching for
values of the six parameters h,C,¢, ...,¢4 in Eq. (4.2) that
satisfy these two conditions and generate a given needle
configuration is a formidable task. The simple relation (4.14),
which expresses the angle enclosed by the two needles in terms
of the sum ¢; + --- 4+ ¢4 reduces the space of parameters
in which one must search, and we have found some simple
configurations (A)—(D) of the needles, discussed in Sec. IV A 1
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FIG. 11. Same as Fig. 9 except that B = +/3/4 = 0.433. Both fy and © diverge as ® approaches /3, the angle at which the needle tip
touches the boundary. For ® close to /3, the numerical predictions (points) for f, agree with the asymptotic expression (curves) given in the

last paragraph of Sec. V. Like f,, © also appears to diverge as (5 —

®)~'. The numerical results for ® are compared with fits of the form

Ou(P) = A(§ — ®)~!, with A chosen to reproduce the rightmost point in each graph.

and shown in Fig. 3, in which the space can be further reduced.
In Secs. IV B and IV C we analyze the special case in which one
of the needles has a finite length and the other is semi-infinite
or infinite.

We have put the finite-needle approach to work in two ways:

(a) First of all, we have analyzed the case of needles with
separation much greater than their lengths analytically. In
this regime the inner radius # < 1 of the annulus is much
smaller than the outer radius of 1, and both the small &
expansion and the small-particle operator expansion (SPOE)
yield information on the force and torque. Beginning in
paragraph (E) of Sec. IV A 1 and continuing in Secs. [IVA?2,
IV B, and IV C and Appendix B, we show the consistency
of these two approaches. For example, the hyperuniversal

contribution to force and torque, which is independent of the
surface universality class and arises via (2.3)—(2.11) from the
Schwarzian derivative of the mapping, is provided within the
SPOE (B15) by the stress-tensor operator (B18).

(b) Second, by using the same conformal mapping approach
and evaluating formulas numerically, we have studied the force
and torque over the full range from small to large values
of the ratio of needle length to needle separation. Results
for several types of needle configurations (see Fig. 3) and
several combinations of universality classes are shown in
Figs. 4-11 and discussed in Sec. V. In all cases the force
is attractive for OO and ++ boundaries and repulsive for
+— and O+. For needles which are very short or very long
in comparison with their separation, the numerical results
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in Figs. 4-11, shown by points, are in excellent agreement
with the curves, indicating the exact asymptotic behavior. The
asymptotic behavior for short needles follows from the SPOE.
For long needles it follows from the results for needles of
infinite length in Sec. III and for strongly overlapping and long
mirror-symmetric needles in Appendix C. In configuration
(D), for example, the force component f, and the torque © are
predicted [see Egs. (C4), (CS), and (C3)] to be independent
of D and to vary linearly with D, respectively, in the large
D limit, as shown in Figs. 7 and 8. For the mirror-symmetric
configuration (C) the torque ® is also predicted to vary linearly
with D for large D (see end of Appendix C), as shown
in Fig. 6. All of the asymptotic predictions in Figs. 4-11
are free of adjustable parameters, except for the torque ®
in Fig. 6 for large D and in Fig. 11 for ®/m — 1/3 (see
the discussion in Sec. V). Finally, we recall that for certain
configurations of needles of intermediate length, there is an
interesting nonmonotonic dependence of the force on needle
length, see, e.g., the right side of Fig. 5 and the discussion at
the end of paragraph (B) in Sec. V.

We close by comparing the advantages and disadvantages
of the conformal mapping approach of Secs. IV and V and
of the approach based on the SPOE. For evaluating the
force and torque for arbitrary size to separation ratios, as in
Sec. V, the former is clearly superior. However, it is limited to
two-dimensional critical systems with conformal symmetry,
to particle surfaces with uniform boundary conditions, and
to the interaction of two particles [61] immersed in the
critical medium. The SPOE is applicable only if the particle
size is small compared to the interparticle separation and to
the correlation length of the medium in which the particles
are immersed. However, the SPOE is not limited to two
dimensions, is valid in near-critical as well as critical systems,
and also applies if there are more than two immersed particles
[62] and if the particles have nonuniform boundary conditions
[63]. In addition to spherical and nonspherical particles
embedded in near-critical fluids [29,57], the SPOE method
has been applied to particles bound to fluctuating surfaces in
Ref. [24], where it is called “effective field theory.”

APPENDIX A: TRANSLATION AND ROTATION
OF ONE OF TWO PARTICLES

A general infinitesimal coordinate transformation,

f=r+a(r), (A1)

changes the geometry of a critical system, including the sizes,
shapes, separations, and orientations of embedded particles,
from G to G. The corresponding change in the universal
scaling part [64] of the free energy is given by

Fo = Fo = —kaT, [ dr Y 1oao/ord(Tiuthe  (A2)
k.t

to first order in a, where T}, is the stress tensor [34,46].

For two particles in the (r,,r,) plane, the force and torque
on particle I due to particle II follow directly from the change in
free energy as particle I is translated by an infinitesimal vector
(dR.,dRy) or rotated by an infinitesimal angle d® about a
point (ro «,7,y), while keeping particle II fixed. Assuming that
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particles I and II are located above and below the line r, = 7,

respectively, we fix particle II by choosing

(ax(r), ay(r)) = (A (r), Ay(r)) X O(ry —Fy),

where © is the standard unit step function. To translate and
rotate I, we choose

(A3)

(A, Ay) = (dR,, dRy)’ (A4)

(Ax(r), Ay(r)) = (=ry +ro,y ,;x — rox)d P,
respectively. On substituting

dag/or; = [0Ar/dre] x O@ry — F,) + Apde,8(ry — 7y) (A6)

(AS5)

in Eq. (A2), the first term on the right-hand side does
not contribute, since dA;/dr, vanishes for the shift and is
antisymmetric in k€ for the rotation, while Ty, is symmetric.
Thus,

(o]
Fo—Fg = —kBTC/ drJ,

[ee]

T =" Ao i) Tiy(reiy))e. (A7)
k=x,y

Of course, Fg — F should not depend on the precise

choice of 7,, and this property follows from the vanish-

ing of 9( f_oooo dryJ)/0F, due to the continuity equation

> 9{The(r))g/0re = 0 at any point r outside the particles.

Using the relations

(Tyy(rxvfy»G = _(Txx(rxvfy»G =Re 1.9(2),
(Txy(rxiy»G = <Tyx(rxjy)>G = Imd(z),
¥(2) =(T(2)/7,

between the Cartesian components and complex form of the
stress tensor (see [34,46]), one finds

(A8)

Z=rx+ifya

J = dR,Im Y (z) + dRyRe ¥ (z), (A9)

J =d®Re[(z — 20)0(2)], zo =rox +irgy, (A10)

for the translation and rotation, respectively. Together with
Eq. (A7) and dr, = dz, this implies

Fe — Fg = k3T|:deIm dz9(z) + dRyRe/ le?(Z)i|,
CI CI

(Al1)

Fy — Fg = kBTdQDRef dz(z — z0)%(2), (Al2)

G

where the closed integration contour C; goes clockwise around
particle I, with particle II outside the contour. In arriving at
this result, we first deformed the integration path in Eq. (A7)
to a counterclockwise loop around needle I, as allowed by
the analyticity [34] and large z properties of ¥(z) and of (z —
20)U(z). We then replaced this integral by minus the integral
around the clockwise contour C;.

Equations (All) and (A12) are more general than our
derivation and also apply to configurations in which the two
particles do not lie above and below a line parallel to the
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ry axis. The same is true of the corresponding expressions
(2.4) and (2.8) for the force and the torque. Two needles
can always be separated by a straight line, and after an
appropriate global rotation of the system, Eq. (A3) can
be applied. On rotating counterclockwise by an arbitrary
finite angle w, (T (2)) — e 2(T(2)), dz — €'®dz, 7 — z1 —
e'®(z — zp), and Eqgs. (2.4) and (2.8) correctly predict the
rotation f +ify, — €“(f, +ify) of the force and that the
torque is unchanged. Expressions (A11) and (A12) hold for
two particles of arbitrary shape, even if they are positioned
so that no separating straight line exists. This follows from a
modified infinitesimal transformation (A3) in which the region
onto which the step function ® projects is not a half plane.
For the special case of two widely separated needles
we have checked the consistency of Eqs. (All) and (A12)

J
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with the small-particle operator expansion reviewed in
Appendix B 2.

APPENDIX B: EXPANSIONS FOR SHORT NEEDLES

The Casimir interaction of a needle which is short compared
to the distance to other particles and to the boundary can
be studied analytically in a power series expansion. In
Appendix B 1 we consider the small & expansion, where &
is the ratio of the inner to outer radius of the annulus, and
provide more details on the derivation of the distant needle
results for force and torque presented in Sec. IV. In Appendix
B 2 we study the interaction of the needles with the SPOE.
Since the two methods must lead to identical results, one can
make useful checks.

1. Expanding for small &

a. Two small needles

To arrive at the form of t*® for widely separated needles given in Eq. (4.25), we expand the Schwarzian derivative on the
circle C = C,, defined below Eq. (4.24) and considered in Fig. 2, in terms of /, obtaining

S(w = h'2Ce'?) x C*e*% /6 =: o (p) = o0p(p) + h'01() + hoa(p) + O™/, (B1)

where
o9 = _C2621w672zq)1 _ C72e721<pe21<p3 ,

o1 = 2{C3H¢(e719

_ e—3i(ﬂ1) + C—3e—2i(p(ei(p3

_ e3i<ﬁ3)},

0y = CH?P[—1 4 7291 (6 — 4€'?) + e 49 (=5 + 4€'? — 26%9)] + 272191 %
+C e 1 4 &H9(6 — deT'0) + €M1 (=5 + de 7Y — 2¢7%9)]. (B2)

The invariance of the right-hand sides on exchanging (C,@,¢;,¢3) < (C~!,—¢,—@3, — @) presumably persists in higher order.
On the circle C, the prefactor of the square bracket in the integral (2.5) reads

1 1 . :
= ——h*(1 = )2eH 4 [1 + h'%58,(p) + hy(p) + O], (B3)
Z'(w) A
where
81 =2C7 1" — ™), 8 = —4C 2 4+ CT2HN (4 — 270 4 ¢7HY) 4 CPe7H (=26 + £79), (B4)
and implies
1 1 ihS2
™ E/ dw (=)= S(w)/m = e, (B5)
o dzjdw 24 4T AC

where

27
I:f de(e™ — 2+ Y1 + h'/?8, + hé, + - Yoo + h' o1 + hoy + - +)
0

2
=h / de(e™ — 2 + ¢)(on + 8,00) + Oh*'?) = 8 he 291673 (B6)
0

Together with Eq. (4.21), this leads to the result for 75 in Eq. (4.25).

Next we derive (4.30) of 6®® for two widely separated needles. Since in Eq. (2.11) we again integrate w counterclockwise
around the circle C = C., the two required quantities ¢,(w) are conveniently obtained by splitting the % integration paths in
Eq. (2.9) into three parts (see Fig. 2): [«¢] from w; or w, along the outer boundary circle to the point —1; [8] from —1 along the
negative real axis to —Ch'/2; [y] from —Ch'/? along the circle C, to the point w = Ch'/? exp(ip). This yields

La(w) = ¢+ P 4 W), n=1,2, (B7)
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where
/A =00/h), ¢PlJA = —hT32(C/2)e 7 9 + O(1/ h),

) . . 1 1 . 1 1

[v] A= —h32ce el — 200 (ei? — o i%s _ hlac=2(—1 —2ip3 i

¢ (w)/ ¢ {[ (e ¢ "MN1gq3) " e ™10 72

. 1 1 1 . 1 3

C—2 2igs3 _ - CZ —2i¢g; Q= O h3/2 , BS
+C e (—1_Q+Q+2>+ e o ST (h7) (B8)

and Q = ¢'¢. By construction, only the first term ¢*! in Eq. (B7) depends on n, and only the third term ¢!(w) depends on w.
The 1 expansion for 6 is obtained by substituting 1/z'(w), S(w), and ¢, from Eqs. (B1)—(B4), (B7), and (BS) in Eq. (2.11).
One (readily) finds that ¢[*! and (with more work) that ¢["1(w) only contribute to ) in orders higher than /2, while ¢#! makes
the leading contribution 88 — ¢#17(5 given in Eq. (4.30), which is of order 4. Here Eqgs. (B5) and (B6) have been used in the
last step.

b. A small needle in the half plane

Here we derive, within the & expansion, the contribution —Re 67 to the torque acting on a small needle in the half plane
shown in Eq. (4.52). For the integration path C in Eq (2.11), we use the inner boundary circle w = he'? and split the integrations
for ¢,(w), as in Eq. (B7), where for [«] the integration is as before, while for [8] and [y] it goes from —1 to —/4 and from —h
to w = he'%, respectively. For [y] we integrate over the segment of the inner circle, which does not contain the singular point
w = h of Z'(w). Instead of ¢ it is convenient to use the deviation x = ¢ — 7 from ¢ = 7 as the integration variable on the inner
circle, and with the help of Eq. (4.47), one obtains

cWw = he'?)/|A| = _lfxdx/;ﬁ(x/)
hlo 7 4cos?(x'/2)
- —% tan(x /2) + h{2(1 — cos x) sin(2ey) + [2sin x — tan(x /2)] cos(2¢1)}. (B9)

Here P is the product in Eq. (4.47), and we have used its behavior for small /,

< ) N b 2im - . .
Plx) = l_[ : 15 e — 1 —2h~{[2sin x + sin(2x)]sin(2¢p;) + [2cos x + cos(2x)] cos(2p1)}. (B10)

k=1

To first order in A,

(¢l + &) /@IAD = —i(1 + e 7)) — 4he ¥ sin g, (B11)
gl[a] + é‘z[a] + [B] |A| _ l + h 1 + 1 2i¢p) 5 —2ig; (B12)
2 ¢ ~ o ! 2¢ 2¢ ’
so that
é—[a] +§[a]
Re (% + §[’3])/|A| = —3hsin(2g)), (B13)
and Eq. (4.52) then follows from
271, T 1 é-[a] +§[a] .
——Ret'" = h/ d)(4cosz(x/2)~—{Re <¥ + B + eyt 1Al (B14)
t(h) _x P 2

Inserting Eq. (B9) in Eq. (B14), one finds that ¢! does not contribute to the leading-order result shown on the right-hand side
of Eq. (4.52).

2. Operator expansion for a distant needle

Like a product of two operators in the “operator-product expansion” [44], a small particle can be represented by a sum of
operators with appropriate prefactors [29,57]; see also [17]. Consider a distant needle J, i.e., a needle of short [43] length Dy and
surface universality class Hj, with center at rj, and directed along the unit vector ny. Inserting it into the d = 2 Ising model at
the critical point changes the Boltzmann weight of the corresponding field theory by a factor

e o1+ sy, (B15)
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where sy is the operator series [35]

X 2 2
DJ © DJ 1 3 1 T DJ ~
= A (=L 14+ (= Ar Dy— A, | |{O@) - (=) T +---. (BI6
5 O;é o7 T\ ) 160 T80 7y \ P T 200 @=7{7) 1O+ (B16)
Here A, is the Laplacian operator, and the expressions
Dy= Y nyniedy,, o, (B17)
k,=x,y
and
()= Z ny i nye Tre(ry) (B18)
kl=x,y

are the second derivative and the component of the stress tensor [46], respectively, in the needle direction. In Eq. (B16) all the
operators O are subtracted so that their bulk mean values vanish at the critical point, and (s;),,x = 0. The operators O = ¢ and
O = € correspond to the order parameter and energy densities, respectively, and are normalized according to

(O@O) o = [r — /|77, (B19)

with x4 = 1/8 and x. = 1. The universal quantities Agﬁ) in Eq. (B16) are the amplitudes of the corresponding density profiles

(O(ry,ry))unp = Agj )ry’ 0 in the upper half plane (uhp) with the boundary at , = 0 belonging to the surface class Hy. They are
given by [34]

AP =0, AP = AP =28 AP = AP = AT =1/2. (B20)

The amplitudes .Agi) should not be confused with the prefactor A of the conformal transformation in Sec. Il A. Denoting the
angle between the unit vector ny = (1 ,,n; ,) and the x axis by ®; and using complex notation,

retiry =z, re—iry =2, ny+in, =e?, (B21)

one obtains the useful relation
- 1 . L
T(J) = cosQPy) Ty, (ry) + sin(2Py) Ty (ry) = —Z—[ez""JT(zJ) + e NT ()] (B22)
- JT

Here T(z) and T (Z) are components of the complex stress tensor [34], and Ref. [46] was used in the last step. Note that the
prefactor of the 7(J) term in Eq. (B16) is independent of the surface universality class Hj of the needle, i.e., “hyperuniversal”
[65]. The ellipsis in Eq. (B16) represents contributions from higher descendants of 1, ¢, €, each of which is compatible with all
symmetries of the needle and which, due to their scaling dimensions, are multiplied by powers of Dj, greater by at least 2 than
the powers shown.

a. Two small needles

For two small needles I and II the free energy of interaction § F is determined by [45]
e FIE D) = 1 4 (s15m)buik (B23)
where, on using (B16)—-(B20),
(stsmbuk = £E+H + -+ (B24)
for needle classes O O (upper sign) and O+ (lower sign), while
(sis)puk = £F +E+H+--- (B25)
for classes ++ (upper sign) and +— (lower sign). Here

DDy DI\ [ 1 D\’ /[ 1 1 Di Dy s
E=—|1 + | = _EArI + 3,Z)I + ? __Al‘n + 3,Z)H |I' r |2 = [l + 2 (ﬂl + ,BII)]a (B26)
I — 1

16 8 2 16[r; — ry|?
F = o1+ 2 (a4 00+ 2 (a4 00 | = (2PN e g @2
123" 12 ey — w4 \ e — e ’
and the hyperuniversal contribution (see Refs. [34,46]) is
2 2 2i(®P+Ppy)
T DD ~ ~ e

H = <_> ( ! “) (TMTAD)pue = 2—“’(D1Dn)2[—4 +c.c.]. (B28)

2 4 (z1 — zm)
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The quantity §; is defined by

2

Dy )
By = — (=14 3{[ny(ry — r)l/Irr — rul}"), (B29)
[rp — 1y

where the curly bracket depends on the angle between the direction of needle J and the vector between the two needle centers.
As expected, all the terms in the free energy remain unchanged if either needle is rotated about its center by 180°.
The force (f%, fy) on needle I follows from

d d
(fxs fy):_(_ >5F1 (B30)

, ——
Brl,x 87‘1,_\7

and the torque ® from Eq. (2.7) with ®, = &;.

For illustration, consider the symmetric-perpendicular (letter T) needle configuration with needle centers on the x axis and
rix — i > 0, as described in paragraph (A) of Sec. IV A 1, and assume that the two needles have equal lengths D; = Dy = D.
Denoting by B = |r; — rul/D = (rix — rux)/D = |ziul/ D the center-to-center distance of the needles in units of D, one finds

E=274B2427'B™* F=B V4 42%B H=_27B" (B31)
The component f, of the force on needle I vanishes, and
Df./(kgT) = (d/dB)In[1 + (+1,—1) x 27*B72 4+ (3,—5) x 27°B™4] (B32)
for needle classes O O (left entry), O+ (right entry), and, via [66],
Df./(kgT) = (d/dB)In[1 £ (B~Y* +27°B=%/%) 4 274B=2 4 O(B™)] (B33)

for classes ++ (upper sign) and +— (lower sign).

As another example, consider needle configurations mirror symmetric about the imaginary axis, which correspond to class
(©) in Sec. IVA 1. By symmetry f, =0. In terms of the angle « = ®34 — &1, = @y — Py enclosed by the two needles,
Egs. (B26)—(B29) lead to

E=2""B724+27%—1 + 3[sin(a/2)*} B4,

F =B V* 42751+ 3[sin(a/2))*}B~Y*, H=+27B7* (B34)
and
Df./(kgT) = (3/dB)In[1 + (1,—1) x 27*B72 4+ {(—7,9) + (24,—24)[sin(a/2)]*} x 277 B~ (B353)
for (O O,0+) and [66]
Df./(kgT) = (8/0B)In[1 £ (B~"* +273{—1 + 3[sin(a/2)*}B~*) + 27*B~2 + O(B™)] (B36)

for ++ (upper sign) and +— (lower sign). The special cases (i) and (ii) of collinear and symmetric-parallel needles correspond
to o = and o = 0, respectively. For 0 < o < 7 needle II exerts a nonvanishing torque ® on needle I, where ® /(kpT) =
—(0/0®1)8F/(kpT) is given by the right-hand sides of Eqgs. (B35) and (B36) with d/d B replaced with —d/d«. For (O O,0+)
one finds from Eq. (B35) that ® /(kzT) = (—1,1)2773B *sina + O(B~°). The sign of ® indicates that the interaction is
dominated by the two closer needle halves.

We also consider case (D) in Sec. IV A 1, in which the two needles of equal length D form angles &, = &; = ® and
&34 = ® 4 7 with the vector z; — zi; > 0 between their centers on the x axis. For this geometry Eqgs. (B23)—(B30) yield

Df./(kgT) = 3/3B)In(1 +§), S ==2[2"*B72+{—1+3(cos ®)*}27B~*] +cos(4®)2°B~*,  (B37)
and
Df,/(kgT) = [£6sin(2®) + sin(4®)127' B> /(1 + S) (B38)

for needle classes O O (upper sign) and O+ (lower sign). For needle classes ++4- (upper sign) and +— (lower sign) the force
components are

Df/(kgT) = (3/3B)In(1 + "),
§' = £[B~4 4 (—1 +3(cos D)2 B4 + 27 B2 4 {~1 + 3(cos ©)2)2 B~ + cos(4®)2 B, (B3Y)
and

Df,/(kgT) = {£3[sin2®)|127B~'¥/* 4 [65in(2®) + sin(4®)]127 B3} /(1 + §). (B40)
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In Sec. V we found it convenient to rotate this same configuration by an angle 7 — @, so that needles I and II are
antiparallel and parallel to the real axis and z; — zyy = |r; — ryle’ ™), implying [r1x — rux, 11,y — riy] = |1 — ryl X {sin[® —
(r/2)], cos[® — (/2)]}. For this orientation,

Df./(kgT) = (£{(2B)™> + (2B)>[—5 + 9(cos ®)*]} cos ® + 27" B~ cos(5P))/(1 + ), (B41)

Df,/(kpT) = (£{—(2B)™> + 2B)°[2 — 9(cos ®)*]} sin ® — 27" B~ sin(5d))/(1 + 9), (B42)
for needle universality classes O O (upper sign) and O+ (lower sign), while for +-+ (upper sign) and +— (lower sign)
Df./(kgT) = (£{B~* —2753B713/4[11 — 17(cos ®)*1}(cos ®)/4 + {2B) > + (2B)>[—5 + 9(cos ®)*]} cos
+27"B73 cos(5®))/(1 + §), (B43)

Df,/(kgT) = (£{—=B/* +27°3B/4[3 — 17(cos ®)*]}(sin ®)/4 + {—(2B) > + (2B)°[2 — 9(cos ®)*]} sin ®
—27"B73sin(5®)) /(1 + §). (B44)

As required by symmetry, f, and f, in Egs. (B37)—(B40) are even and odd in @, respectively, and in Eqs. (B41)—(B44) they are
odd and even in ® — (;7/2). For the torque ® in case (D) our operator expansion yields

O/(kgT) = —[£6sin2®P) + sin(4P)278B~*/(1 + S) (B45)
for needle classes O O (upper sign) and O+ (lower sign) and
0/(kpT) = —{£3[sin(2®)]2"°B~/* + [65in(2®) + sin(4D)]27*B~*}/(1 + §') (B46)

for needle classes ++ (upper sign) and +— (lower sign).
For two small needles with arbitrary lengths Dy, Dy and with their centers on the x axis, the SPOE reproduces the leading
force contribution (4.28) to f; and yields

3 (DiDp)'/3

filksT =% P [Df sin(2®y) + Df sin®)]/(1 £ 0),
3 (DiDy)'/*D} .
0 /kyT = :FQW sin2®y) /(1 + o), (B47)

where o0 = (DyDy)'/3/|z11|'/4, for the leading contributions to fy and © in the case of needle universality classes 4+ (upper case)
and +— (lower case). The SPOE also reproduces the leading hyperuniversal contributions (4.29) and (4.30) to the force and torque
derived from the / expansion. For the latter quantities this is apparent from Eqgs. (4.31) and (B28) since § F (hu) [(kgT) = —H.

b. A small and a semi-infinite needle

The interaction free energy 8 F [45] of a small needle I and a semi-infinite needle (semi), i.e., the free energy required to
transfer I from the bulk plane to the plane with the semi-infinite needle, is determined by

e /KT — 1 4 (S1) semi- (B4%)
Here sy is the operator series in Eq. (B16), and ( )sem; denotes a thermal average in the z = r, + ir, plane with a semi-infinite
needle of class Hnmi coinciding with the positive real axis, as in Sec. IV B. Since the semi-infinite needle can be generated from
the boundary of the upper half w plane by the conformal transformation z = w?, the averages of the various operators on the
right-hand side of Eq. (B48) follow from their counterparts in the half plane. From Eqgs. (B22) and (2.1) and the vanishing of
(T(w))halfplane, we obtain
(OC1xr1y))semi = AG=[2]21] sin(argzr)/2)] 70 = AG™ [2]z1|(|z1] — r1.0)] 7/ (B49)
and
(T(D)semi = —cos [2(Py — argz))]/ (647 |z1 %), (B50)
where 0 < argz; < 27 and the position vector z; = ry, + iry, is defined below Eq. (4.36). The expression
fx - lf 1 8 . 8
- = -1 (S1) semi Bs51)
kT I+ (st)semi \ 0 7Lx drry

for the force, which follows from Eqs. (B48) and (B16), reproduces, in leading order, the result from the /4 expansion given below
Eq. (4.44). The reason is that in

0 ) 3z1 — |zl
— O mi — — O semi» BSZ
(3 lx 1371,y>< e xo2Z1(11 — lz1l) Oee (852)
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with (O)emi from Eq. (B49), the same fraction appears on the right-hand side as in Eq. (4.44), and on expressing (O)em; via
(4.42) in terms of h/|z12| = h/ Dy, one may use that

Z Agﬁ) Agfsemi)xo @hy° — t(h — 0) = {h, —h, (\/5/8)h1/8, —(\/5/8)]’11/8} (B53)
O=¢.e

for {OO, O+, ++, +—}. Moreover, in the cases ++ and +—, the denominator on the right - side of (B51) is consistent with
the denominators in Eq. (4.27).
The orientation-dependent contribution to e

272(Dy/|z1])* cos[2(®; — argzy)], (B54)

—3F/(ksT) of lowest order in the needle length,

comes from inserting the stress tensor average (B50) in Eq. (B48), using Eq. (B16), and is independent of the needle classes Hj and
Hgemi. For universality classes O O and O+, the contribution (B54) clearly dominates the orientation dependence o<Df(‘Jr2 = Df
coming from the D;O-term in Eq. (B16), provided that the components ry, and ry, of z; are of the same order. However, on
approaching the limit 1 , — 400 with ry ,, finite, the contribution from the D;O term approaches the finite orientation dependence
of a needle in the half plane [see Eq. (B55) below], while the contribution (B54) vanishes. For classes ++ and +— the DO term
contributes an orientation dependence preceded by a power law D;l/ 92 with an exponent which is only slightly larger than the
exponent of the power DI2 in Eq. (B54). Note that Eq. (B54) favors needle orientations parallel and antiparallel to the vector zy
from the midpoint of the finite needle to the finite end of the semi-infinite needle.

c. A small needle in the half plane and in the symmetric-parallel configuration

For a small needle I in the uhp the free energy 8 F of interaction [45] with the boundary of surface class Hs at ry =0 is
determined by Eq. (B48), with ( )s.mi replaced with the average ( )unp in the half plane. The expressions for (O).n, given above
Eq. (B20) and the vanishing of the stress tensor average imply

D \© D\’ 1
e F/sT) — 1 4 Z Ag’l>,4<(§’s><—l) {1 +( ! ) B[xo+ 1 —3xp cos(2<1>1)]}. (B55)

25 2riy
O=¢.e Ly Ly

Both the force and the torque follow from Eq. (B55).
The force f = —96F /0ry, with Dy and @y fixed is given by

Dif/(kgT)=(3/3B)In (1 £ ;2B)"'{1 + 2B)7?£[2 — 3 cos2P]}) (B56)
for classes O O (upper sign) and O+ (lower sign), and by

Dif/(kgT) = (a/aB)ln(l + 21/4(23)1/8{1 + (zé)*z%p - cos(2<b1)]} + %(21?)*1 {1 + (23)*2%[2 -3 cos(2d>1)]})

(B57)

for +- (upper sign) and 4+— (lower sign). Here B = ry, v/ Dr.

The expressions for the torque per kg T, —d(8 F/kgT)/0 Py, follow for the various cases of universality classes H; Hs from
the corresponding right-hand sides of Eqgs. (B56) and (B57) on replacing (3/9 B) with (0/0Py).

Next we consider a small needle in the symmetric-parallel configuration (B) of Fig. 3, assuming Dy/c < 1 and Dyj/c arbitrary,
where ¢ = z1 — zj1 is the distance between the needles. The limits Dy/c — oo and Dy/c < 1 correspond to a small needle in
the half plane and configuration (B) with two small needles of different lengths, respectively. The free energy 6 F is determined
by Eq. (B48) with ( )sem; replaced with the average ( )i in the plane containing needle II. For a needle II with boundary class
Hyp, centered about the origin and extending along the y axis, the profiles of the order parameter and energy density are given by
(see, e.g., Appendix A 1 in the first paper of Ref. [17])

(O, 00" = AYW(Dy/2)~*0 [EQ|r, |/ Dm)I*®, (B58)

BE) ="+ D), (B59)

for O = ¢ and O = ¢, respectively.
Making use of this result and retaining only the the leading monopole contribution in the SPOE, one obtains

Duf/(ksT) = 2(3/08) In {1 £ 3(D1/ DE®)} |y, p, (B60)
for classes O O (upper sign), O+ (lower sign) and
Duf/(kgT) = 2(3/9&) In{1 £ 2Y/*(D1/ D) *[EE)]*} g =2¢ Dy (B61)

for ++ (upper sign), +— (lower sign).
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APPENDIX C: NONSYMMETRIC PARALLEL NEEDLES
WITH STRONG OVERLAP AND LONG
MIRROR-SYMMETRIC NEEDLES

Consider configuration (D’) of Fig. 3, corresponding to two
needles of equal length oriented parallel to the x axis [54],
in the limit of strong overlap. In this limit the distances |z; —
Z4] = |22 — z3| between the left ends z; and z4 and the right
ends z, and z3 of needles I and II, respectively, are much

smaller than their lengths |zo — 21| = |23 — z4] = D, so that
the two needles form boundaries of a long strip of width W =
|rl,y - r4,y| = |r2,y - r3,y|-

First, we evaluate the torque on needle I using Egs. (2.7) and
(2.8). On integrating closely around needle I, which is located
above needle II, the only contributions to 8 in Eq. (2.8) come
from regions with a width of order |z; — z4| = |z» — z3| near
the ends of the needles, i.e., near the ends of the strip. The
reason is that (i) (T'(z)) vanishes outside the strip over most
of its length, i.e., over most of the upper edge of needle I, and
(ii) inside the strip (7'(z)) is independent of z and equal to its
value wA/W? in an infinite strip, with A from [56]. Thus,
by virtue of the odd factor z — z; = r, — 1, in Eq. (2.8),
the interval of integration centered about ry , = (r; , +72,,)/2
and comprising nearly all of the lower edge of needle I gives
a vanishing contribution. For large D/ W the two end regions
are uncorrelated, and each is equivalent to the end region of a
system of two semi-infinite needles. Replacing z — zyin the left
and right end contributions by —D/2 and D/2, respectively,
we obtain

70 — —(D/2)limg_ oo

X [/ dz(T (2))sit —/ dZ(T(z)m_}- (CI)
Cie(d) G- (@)

Here si+ denotes a system of two semi-infinite needles I
and I, extending from z; and z4 to z; + |oo| and z4 + |00,
respectively, while si— is the system of two needles I_ and
II_ extending from z, and z3 to z, — |oo| and z3 — |o0].
The integration path Ci,(d) goes clockwise around the tip
z; of needle I, starting at z = z; +d —i0 and ending at
z =z1 +d +i0. Similarly, C;_(d) goes clockwise around the
tip z» of needle I_, starting at z = z, — d 4 i0 and ending at
z=20—d —1i0.

On rotating by 180°, the si— system is mapped onto the
si+ system, with needle I mapped onto needle IL,, i.e., z»
onto z4, and needle II_ mapped onto I, i.e., z3 onto z;. Since
exchanging the universality classes in a two-needle system
does not change the stress tensor average [49], it is the same
for the si+ and rotated si— systems. Moreover, the rotation
changes dz — —dz, while no prefactor arises in front of T,
and Eq. (C1) yields

70 — —(D/2)limg. 4o / dT@)gs. (C2)

Cr(d)+Cui(d)

Here the path Cy.(d) encircles the tip z4 of needle IL;
clockwise, starting at z4 + d — i0 and ending at z4 + d + i0.
The integration path in Eq. (C2) becomes connected, leading
to a vanishing result, if one adds both a vertical segment
fromz4 +d +i0toz; +d 4+ ra, —r1» —i0and a horizontal
segment from z; +d + 714, —r1x —i0to z; +d —i0 to the
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integration path. Since for both segments (T'(z)), equals its
value inside the infinite strip, and since the vertical segment
leads to a purely imaginary result, the torque ® = —kgT Re 6
on needle I is given by —1/m times the contribution of the
horizontal segment, with the result

@ _ D (rl,x - r4,x)A
kgT 2 w2

where A depends on the universality classes of the two needles,
as specified in Ref. [56].

We now calculate the component f of the force on needle

I due to needle II. For this, it is convenient to place the origin

at the center of reflection of the needle configuration by setting

73 = —21,24 = —27 and to integrate along a path C; in Eq. (2.4)

midway between the needles along the real axis from z = +o00

) (C3)

to z = —o0, closing the path with a semicircle of infinite radius
which does not contribute to the integral. Since (T (z = r,)) =
(T (z = —ry)), and since Im(T (z = r,)) vanishes except near

the ends of the needle, the desired integral over Im(7 (z = r,))
equals twice the corresponding integral with I and II replaced
with their semi-infinite counterparts I, and I, . In this way
we obtain

fe n(l 1 +3b—3b% — b3

ksT ~ W\48143b+3b2+0°

1=b; (C4)
1+b )

where 7 is given in Eq. (3.4). Here b is positive and related by
1
(rl,x_r4,x)/W=2_(2lnb+b_1/b) (CS)
14

to the ratio (r; , — r4,,)/ W of the parallel and perpendicular
components of the vector between the two left needle ends.
As expected, f;/(kgT) is an odd function of r , — 4, and
tends to A/ W, —A /W, and 0 in the cases b — +o00, 0, and
1 in which the ratio on the left-hand side of (C5) tends to
400, —00, and 0, respectively.

To derive Egs. (C4) and (C5), we first generate the geometry
of parallel semi-infinite needles I, and II; from the upper half
w plane by means of the conformal transformation [67]

W w? - I,
z(w)—ﬂ[zb—l—w( b)+4(b+ )
w i

1 —1In 7 + 3 ] (Co)
Together with (C5) this transformation conveniently places the
tips of I 1 and II; symmetrically about the origin, atz = z(1) =
21 =r1x +iW/2 and z = z2(—b) = z4 = —z;, respectively.
The integration path mentioned just above Eq. (C4), which
is midway between the semi-infinite needles I, and IL,,
corresponds, according to Egs. (2.4) and (2.5), to the imaginary
axis of the upper half w plane. Similarly, the integral over
Im(T (z = r,)) corresponds to the integral of a real rational
function of |w| from O to +oc and leads to a force f, on
needle I, due to II; which is exactly half of f, in Eq. (C4)
[68].

Finally, we consider the mirror-symmetric needle config-
uration [class (C) of Sec. IV A 1] and argue that in this case
the torque ® also increases linearly with the needle length
D for D — oo. First we place needles I and II so that z, =
1,21 = D+ 1 and z4 = €%z, 73 = €'%z,. We also introduce
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an auxiliary “wedge” configuration of two corresponding
semi-infinite needles which extend from z = 0 to |oo| and
to ¢'“|oo|, dividing the z plane into two wedges of opening
angles o and 2w — «. To evaluate 6 in Eq. (2.8), we choose
Cr so that it encircles needle I closely and subtract and add
(T (2))wedge t0 (T (z)). This leads to 6 = 560 + #, where

D
80 = /c dz[(T(z)) — (T(Z)>wedge]{rx - (? + 1) }

5 D+1
0= f dro(T(ry +i0) = T(ry — io))wedge
1

e8]

Since (T(2)) wedge X 772 [34], its average in the integral for 6
is proportional to 2, and calculating the integral reveals the
leading behavior § oc D for D > 1. Since the square bracket
becomes arbitrarily small, for z = r, +i0 and z = r, — i0, in
the “central” region 1 <« ry < D, the quantity 66 represents
the contribution to the torque from the ends of the needles, and
30 can be written as a sum of two expressions. One of these,
8.6, corresponds to semi-infinite needles extending from 1
to |oo| and from e’® to ¢/*|oo|. The other contribution, 8.6,
corresponds to needles extending from O to D and from 0 to
€'“D. In the case of §_6, the difference (7 (z)) — (T(2)) wedge

for r, > 1 is proportional to rx_z_@ﬂ/a), if z =r, + 10, and to

py 2T Bm/@r=al e oy — §0. This follows from Egs. (3.7)—
(3.10) for the mirror-symmetric case considered here with
b = 1. Thus, only r, values of order 1 contribute, and 6_6 is
proportional to D for D — oo. Asfor é. 6, its needle geometry

J

1
<T(w)>u JUp U3 —
PR )T = (uz) T A (u3) !
T Ug, U
fapy = Lt (g ) =
Uab Uab
and for N =4
(T (w)) :
W))uy,up,uz,uqg =
PR (uiusa) T = (uisuoa) T+ (uosuns) !

(T(w))u,,
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can be mapped either by the dilatation z/D — z to needles of
length 1 or by the inversion D/z — z to the needle geometry
of §_. Either way, one realizes that §.6 is of order 1. The
plausible assumption that the D dependence from § and §_6
does not cancel leads to the predictions 8 o D and ® D for
D — 00, in agreement with the numerical results for case (C)
in Sec. V.

For a needle I with ends at ¢'® and (D + 1)e® in the upper
half plane, similar arguments also imply ® o D for D — ooc.
This is consistent with the numerical results for the torque in
Fig. 11 for & close to 7 /3.

APPENDIX D: NEEDLES WITH MIXED
BOUNDARY CONDITIONS

1. Half plane with inhomogeneous boundary conditions

We begin with a discussion of (T (w))y, u,....uy i the upper
half w plane with boundary conditions on the real axis that
alternate between + and — at the N points uj,u,, ... ,uy. If,
for example, the boundary condition for —oo < u < u; is +,
thenitis — foru; < u < uy, +foru, < u < us,etc. The stress
tensor for such mixed boundary conditions is of interest in its
own right and is also the starting point for studying the Casimir
interaction of needles with mixed boundary conditions.

For N = 0, (T (w)) vanishes, and for N = 1, 2 [48]

t

(T(w))y, = m,
1 1\’
(T(W)uyu, = f( - > , (D)
w—ux w — Uy
f = f+_ = 1/2

ForN =3

{[12] = (131 +[23] + (12,3) — (13,2) + (23, D},

(D2)

([12]/uz4 — [131/u24 + [14]/us3 + [23]/u14 — [24]/u13 + [34]/u12),

(D3)

respectively, where u,, = u, — up. For N an arbitrary even integer >4

1\ 1
(T(w))ul,uz ..... un = (Pf(N)_> X 8_)\Pf(N)(f +)\[l]]>

M,’j

1\ 1
=<Pf<N>—> x> (=1 ab] PRGN —

M,’j

Uij A=0

(D4)

M,’j

1<a<b<N

Here PV A; ; is the Pfaffian [69] of the N x N antisymmetric matrix with elements A;; = —A j;, the sum in Eq. (D4) contains

%N(N — 1) terms, and Pfg]Z_’N_Z)Aij is the Pfaffian of the (N — 2) x (N — 2) matrix obtained from the N x N matrix by
removing the ath and bth rows and columns. In the limit uy — oo Eq. (D4) yields the stress tensor for an arbitrary odd number
N — 1 of switches. Equation (D3) follows from Eq. (D4) for N = 4 and Eq. (D2) from Eq. (D3) in the limit u4 — oo. Since the
operator T is even in the order parameter field ¢, (T (w))y, u,....u, 1S unchanged on exchanging + and — in the boundary conditions.
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Equation (D4) follows from the result

L\
(w1, w1) (W2, W2))uy g,y = <Pf(N)f) (Pp(wy,w1) p(w2,W2)) Pf(N)[— :|

Ujj

PHYSICAL REVIEW E 94, 032130 (2016)

1 <¢(w17w1) ¢(w21u_)2))u,‘,uj

- - (D5)
uij  (Pp(wi,wr) ¢(wz,w2))

of Burkhardt and Guim [70] for the two-point correlations of the order parameter in the presence of mixed boundary conditions. In
this expression the angular brackets without subscripts denote thermal averages for a homogeneous + or — boundary condition.
In the limit that w; is much closer to w; than to the boundary, Eq. (D5) must be consistent with the OPE,

P(wy,W1) p(wa,2) — [wia| 1 = Swple(w,w) + H{whT(w) + 0L T@)] + O(lwi2*)},

Wiz = Wy — W,

see, e.g., Eq. (2.39) and Sec. III C in Ref. [57]. Substituting the
expansion (D6) in all the averages in Eq. (D5) and comparing
the coefficients of |wia|~/*w?, on the right- and left-hand
sides leads to Eq. (D4).

2. Interaction of semi-infinite needles with mixed
boundary conditions

Under the mapping (3.8) of the upper half w plane onto the
z plane with two embedded semi-infinite needles, the intervals
—co<u<-b,—-b<u<0andO<u<l1,1 <u<+oo,
which we denote by (i), (ii) and (iii), (iv), respectively (not
the same notation as in Fig. 1), map onto the edges of the
semi-infinite needles II and I, respectively. In the notation of
the preceding section, we consider the following distributions
of surface universality classes 4+ and — along the u axis:

(HN =0,

Q)N =2,uy=—-b,uy =1,

BYN=3,u;=—-b,uy =0,u; =1,

@ N=1u =0,

G)N=1Lu =1

In cases (1) and (4), which were considered in Sec. III B,
the boundary conditions on the two edges of each needle are
the same. In cases (2), (3), and (5), on the other hand, one or
both of the needles has a different boundary condition on each
of its two edges. The stress tensor averages given above allow
us to calculate the force between these needles.

We illustrate the approach in the particularly simple case of
collinear semi-infinite needles generated by the mapping (3.8)
with b = 1 and o = m. Needles I and II occupy the portions
—00 < x < —|z(1)] = —4B and 0 < x < 400, respectively,
of the x axis, and the four intervals of the boundary of the w
plane map onto the upper and lower edges of needles I and II
according to

(1) - Hlowera (11) g Hupper»

(i) — Luppers (iv) = Tiower- (D7)

Starting with + at u = —o0, Eq. (D7) implies
(o )= D6 90 )
Ilower Hlower + + ' + + \— + '
C ¢
- +)\- +
in cases (1)—(5), respectively. The force acting on needle I

follows from Egs. (2.3) and (2.5), the collinear needle mapping
z(w), and the averages (T (w)).. in Egs. (D1) and (D2). The

(D8)

w = (wy +wy)/2,

(D6)
(
component f, is given by [50]
16]z(D)| fx/(kgT) =1, 14 16f =9,
7,1 =32 = —15,1-8=-3; f=1/2, (D9)

in cases (1)—(5), respectively, and the component f, vanishes
in all the cases except (5), where |z(1)| f,/(kpT) = =2f/m =
—1/m.

Itis remarkable that in case (2) of Egs. (D8) and (D9), the at-
traction is 9 times stronger than in case (1). To help understand
this result, note that for the same nonvanishing distance |z(1)|
between the needle tips, the free energy is greater in case (2)
thanin case (1), since in case (2) the spins change direction near
the needle tips. However, when the tips touch, the free energy
is the same in cases (1) and (2), since the upper and lower
halves of the z plane are decoupled. Thus, the free-energy
varies more rapidly with the tip separation in case (2).

3. Semi-infinite needle perpendicular to an infinite needle

Next we consider a semi-infinite needle I in the upper half
z plane oriented perpendicular to an infinite needle II on the
x axis, as described by Eq. (3.2) with o = 7 /2. The tip of
needle I is at z = z(1) = 4.4i, and the preimage of the origin
z=01is at w =u = —1. Allowing for both a homogeneous
boundary (+ for all x) and a boundary with a “chemical step”
at the origin (i.e., a mixed boundary with + for x < 0 and —
for x > 0), and allowing for different boundary conditions on
the right and left edges of needle I, we consider the six cases

Let Thgne\ [+ +\ (+ =\ (- +
Hleft Hright B + +)\+ =)’\+ =)
- =\ (- +) (+ +
<+ +>,<+ +>,<+ _). (D10)

The stress tensor averages (T (w)) in the first five cases are the
five defined in the first paragraph of Sec. II with » = 1 and in

the sixthcase N =2, u; = —b = —1, u; = 0, corresponding
to
(i) = Mg, (1) = Mijghe, (1) = Lighe, (V) = Liet.
(D11)

Together with Egs. (3.1), (2.3), and (2.5) this leads to [50]
32|z(DI fy/(kgT) = =3,

—3 + 1287 = 61,

-3+ 32f = 13;

—3(1 + 167) = —27, 37,
3(—1 + 167) = 21,

i=1/2. (D12)
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The parallel force component f, vanishes in cases (1)—(5), and
incase (6), |z(1)| f,/(kgT) = —2f = —1. The factor 9 increase
in attraction on going from (1) to (2) has an explanation similar
to the one below Eq. (D9).

In principle, one can calculate the force for arbitrary
configurations of two semi-infinite or infinite needles with an
arbitrary configuration of “chemical steps” with this approach.

As a final example, we consider the Casimir force exerted
on the semi-infinite needle I by the boundary II of the upper
half z plane in the presence of chemical steps at two arbitrary
points,

xp = Xifz(D] < x2 = Xalz(D)], (D13)

which separate the x axis into regions with +, —, + boundary
conditions. Needle I has boundary condition + on both of
its edges and extends along the y axis from y = |z(1)| to
y = 4o0. The arrangement is reminiscent of an atomic-force
microscope probing an inhomogeneous boundary. The force
follows from the mapping (3.2) with @ = 7/2 and the stress
tensor in Eq. (D1) with N =2 and u; = —|u|, up = —|uz|,

where
|uj|:1+2X§—2Xj,/1+XJZ-; j=12, (D14)
and the calculation yields
: y ) ui13/2 w1372
st il [|1| _ ]
kgT lur] = Jual LT+ fur| 1+ us
2
+Z|uj|l/2(|”j|+3)
= 2(1 + |uj])? ’
2] ’ +4f< ! ! )2 (D15)
M =—= — ,
kgT 32 1+ |up| 1+ |us|

where |u;| is defined in Eq. (D14):
To get a feeling for the result, we discuss two special cases:
(A) Boundary with a single step. In the limitx, — +00,1.e.,
|uz| — 0, only the single step on the boundary at x; remains.
It separates regions with 4+ and — boundary conditions to its
left and right, respectively. The corresponding force on needle
Iis

fe ur|2Blu |+ 1)
1 = 2f— M~
DT 0+ ]2
f\' 3 ~ |Ml|2
1 - = —— 41‘—, Dl6
D = - S ©16)
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with |u;| given by Eq. (D14). While the parallel force
component f, is negative for all x;, the perpendicular
component f, changes sign from positive to negative on
increasing x; beyond a critical value of the order of |z(1)|.
This is expected, since needle I with its + edges is at-
tracted to the + region and repelled by the — region of
the boundary. For x; — [—00,0, +0o0], |z(1)| fy/(kpT) —
—713/1X11, 2, 1/X T and [z(D)| fy /(kpT) — —(3/32) + 74 —
(2/X}), 1, 1/(4X)]. For x; = 0 one recovers case (6) defined
below Eq. (D10), and Eq. (D16) reproduces the corresponding
force components given in the paragraph containing Eq. (D12).
Forx; — —ooandx; — 400, Eq. (D16) approaches the force
in cases (4) and (1) of Eq. (D12)

(B) Boundary with two steps at equal distances from the
needle. Since the configuration, with steps at x; separating
the x axis into regions +,—,+ is mirror symmetric about the
y axis, the parallel component f, of the force vanishes. The
perpendicular component follows from Egs. (D14) and (D15),
which yield |u3| = 1/|u;| and

fy __3 lez

I =—— :
O =t

(D17)

For x; = 0 the boundary with two steps reduces to a ho-
mogeneous + boundary, and we are back to case (1) of
Egs. (D10) and (D12). For a large distance between the steps,
X1 > [z(D)], Eq. (D17) yields

3 . 4
- —— 4+ 47 —

Iy 4
Iz(l)lkBT 23 X (D18)

Here the first two terms on the right-hand side represent the
force exerted on the needle by a homogeneous — boundary, and
the third term is contributed by the 4 boundaries beyond the
two distant steps. As expected, the latter contribution is twice
the corresponding contribution —27/X7 of a single distant
step, given below Eq. (D16).

For switches of the boundary universality class between +
and O instead of + and —, (T (w)),, and (T'(w)),, 4, are again
given by Eq. (D1), [48], but with 7 = 7, o = 1/16 instead of
f =1,._ = 1/2. Thus, all of the results of this Appendix which
are based on the stress tensor for N = 1 or N = 2 hold, with
the appropriate value of 7, for +0O as well as +— switches in
the boundary conditions.
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CASIMIR INTERACTION OF RODLIKE PARTICLES IN A ...

[50] A useful formula for evaluating the integrals in Sec. III
and Appendix D is [~ dUU*'[(U +b)U —a+i0)]' =
—m cse(mru)[b*~! +i*a*1]/(a + b), where a and b are pos-
itive.

[51] N. I. Akhiezer, Translations of Mathematical Monographs
(American Mathematical Society, Providence, RI, 1970),
Vol. 79. We follow Akhiezer’s definition of the function
¥1(v), which is related by ¥ (v) = &*°™(77v) to the alternate
function of Abramowitz and Stegun, Gradshteyn and Ryzhik,
and Mathematica.

[52] For finite needles that nearly touch, % is very close to 1. This
regime can be studied analytically with the help of “Jacobi’s
imaginary transformation,” which relates ¢, with parameter 2
to ¥y with parameter i’ = exp[—n2/In(1/h)], since b’ — O for
h — 1. For details, see Sec. 22 of Akhiezer’s book [51].

[53] Since rotating a needle by 180° does not change the force and
torque (see Ref. [55]), case (D) can also be represented by z;, =
Z34, Which is generated by ¢4 = —¢,¢03 = —¢,.

[54] Rotating configuration (D) of Sec. IV A 1 counterclockwise by
anangleof # — ®,, where 0 < ®, < 7, yields a configuration
(D) with needle vectors z; = —|z1»| and z34 = |z34| antiparallel
and parallel to the real axis, respectively, and with needle I
located above needle II, as shown in Figs. 3(D) and 3(D’).
In Sec. V and Appendix C this new orientation is more
convenient. The angle @, is related to the new x and y
components by cot &1, = —(r1 — 14 )/ W, W=r|, —rs, =
71y —rayl

[55] Cardy’s expression (4.22)—(4.24) for the stress tensor holds for
an annulus in the w plane with boundary conditions which
are rotationally invariant about the center. Thus, the boundary
condition on circular segment ii in Fig. 2 is the same as on
segment i, and the boundary condition on segment iv is the same
as on segment iii. This implies that each of the corresponding
needles I and II in the z plane has the same boundary condition
on both edges. In this case the force and torque are unchanged if
needle I or II is rotated by 180°, i.e., if z; and z, or z3 and z4 are
swapped. This is consistent with expressions (2.3), (2.5), (2.10),
and (2.11) for the force and torque, since interchanging w; and
w, or ws and wy leaves z'(w) in Eq. (4.2) and S(w) unchanged
and does not affect (T (w)).

[56] At bulk criticality the free energy of an annulus bounded by
two concentric circles with radii 2o and o contains a scale-free
contribution f,nuus(#) which is independent of o, depends only
on h, and vanishes for 7 — 0. Since h(d/dh) fanus/ (ks T) =
—t(h), this contribution is directly related to (k) in Egs. (4.22)—
(4.24). While t(h < 1) is given in Eqgs. (4.26) and (4.27) and is
relevant for the small-particle expansion, t(h — 1) = —27(1 —
h)72A is determined by the interaction between the parallel
boundaries of an infinitely long strip, where the Derjaguin
approximation is exact [29]. Here A = w[—1,—1,23,2]/48 is
the amplitude [34] in the Casimir contribution A/ W to the free
energy per kz T and per unit length of the strip with width W and
boundary universality classes O O,++,+—,0+ and is related
[48] via A = 7 (f — 1/48) to the amplitude 7 in Eq. (3.4). This
is consistent with 7 — 1 for needles much longer than their
minimum separation.

[57] E. Eisenriegler, J. Chem. Phys. 121, 3299 (2004).

[58] Only in exceptional cases does the force between two finite
needles have a simple analytic form, free of special func-
tions, for arbitrary distance to size ratios. One such case is
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collinear needles of equal length D in configuration (i) of
Sec. IV A 1, where the force on needle I is given by f,/(kpT) =
+{8¢c[(c/D) + 1][(c/D) + 2]}~! for O+ (upper sign) and O O
(lower sign) boundaries. Here ¢ = zp — 24 = rax — ra, is the
distance between the closest points of the needles. This result
follows from stress tensor averages (7'(z)) given in Appendix B
of Ref. [35] on using our Egs. (A8) and (A11).

[59] Lateral Casimir forces on colloidal particles in three dimensions
exposed to a chemically structured surface have been measured
in Ref. [41].

[60] Expressions (D1)—(D4) for the stress tensor allow us to study the
effect of inhomogeneous surfaces on the Casimir interaction, not
only of particles embedded in a simply connected region (such
as two needles of infinite length considered in Appendixes D2
and D 3) but also, within the SPOE, of particles embedded
in multiply connected regions. For example, the orientation
dependence of force and torque on a short needle with ordinary
boundary conditions on both edges embedded in the half plane
with an inhomogeneous boundary can be analyzed with an
SPOE like the one in Appendix B2 c. Recently, J. Dubail, R.
Santachiara, and T. Emig, Europhys. Lett. 112, 66004 (2015),
have studied the critical Casimir force for the simply connected
case of a strip with an inhomogeneous boundary with an
alternate approach utilizing conformal field theory and Majorana
fermions.

[61] Certain configurations of three particles in which two of the
particles touch can be interpreted in terms of two particles in a
doubly connected space and can be conformally generated from
an annulus. See H. Hobrecht and A. Hucht, Phys. Rev. E 92,
042315 (2015).

[62] The treatment of the multibody interaction of small circular
particles in Ref. [29] can be extended to small needles using
the SPOE in Eq. (B16). For recent experimental and theoretical
studies of the three-body interaction of colloidal particles in a
critical system, see S. Paladugu, A. Callegari, Y. Tuna, L. Barth,
S. Dietrich, A. Gambassi, and G. Volpe, Nat. Commun. 7, 11403
(2016), and references therein.

[63] For a given particle shape, changing the boundary conditions
from uniform to nonuniform generally alters the symmetry and
the set of operators in the SPOE. For example, for a needle
with boundary condition + on one edge and — on the other,
the SPOE contains, due to its dipolar character, an operator
d,¢ with a derivative 9, perpendicular to the direction of
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