000824053 001__ 824053
000824053 005__ 20240610115555.0
000824053 0247_ $$2doi$$a10.1073/pnas.1608074113
000824053 0247_ $$2ISSN$$a0027-8424
000824053 0247_ $$2ISSN$$a1091-6490
000824053 0247_ $$2WOS$$aWOS:000388830700047
000824053 0247_ $$2altmetric$$aaltmetric:13521509
000824053 0247_ $$2pmid$$apmid:27834220
000824053 037__ $$aFZJ-2016-06677
000824053 082__ $$a000
000824053 1001_ $$0P:(DE-HGF)0$$aLanotte, Luca$$b0
000824053 245__ $$aRed cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions
000824053 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2016
000824053 3367_ $$2DRIVER$$aarticle
000824053 3367_ $$2DataCite$$aOutput Types/Journal article
000824053 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480001895_20027
000824053 3367_ $$2BibTeX$$aARTICLE
000824053 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824053 3367_ $$00$$2EndNote$$aJournal Article
000824053 520__ $$aBlood viscosity decreases with shear stress, a property essential for an efficient perfusion of the vascular tree. Shear thinning is intimately related to the dynamics and mutual interactions of RBCs, the major component of blood. Because of the lack of knowledge about the behavior of RBCs under physiological conditions, the link between RBC dynamics and blood rheology remains unsettled. We performed experiments and simulations in microcirculatory flow conditions of viscosity, shear rates, and volume fractions, and our study reveals rich RBC dynamics that govern shear thinning. In contrast to the current paradigm, which assumes that RBCs align steadily around the flow direction while their membranes and cytoplasm circulate, we show that RBCs successively tumble, roll, deform into rolling stomatocytes, and, finally, adopt highly deformed polylobed shapes for increasing shear stresses, even for semidilute volume fractions of the microcirculation. Our results suggest that any pathological change in plasma composition, RBC cytosol viscosity, or membrane mechanical properties will affect the onset of these morphological transitions and should play a central role in pathological blood rheology and flow behavior.
000824053 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000824053 588__ $$aDataset connected to CrossRef
000824053 7001_ $$0P:(DE-Juel1)157877$$aMauer, Johannes$$b1$$ufzj
000824053 7001_ $$0P:(DE-HGF)0$$aMendez, Simon$$b2
000824053 7001_ $$0P:(DE-HGF)0$$aFedosov, Dmitry A.$$b3
000824053 7001_ $$0P:(DE-HGF)0$$aFromental, Jean-Marc$$b4
000824053 7001_ $$0P:(DE-HGF)0$$aClaveria, Viviana$$b5
000824053 7001_ $$0P:(DE-HGF)0$$aNicoud, Franck$$b6
000824053 7001_ $$00000-0002-8904-0986$$aGompper, Gerhard$$b7
000824053 7001_ $$0P:(DE-HGF)0$$aAbkarian, Manouk$$b8
000824053 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1608074113$$gVol. 113, no. 47, p. 13289 - 13294$$n47$$p13289 - 13294$$tProceedings of the National Academy of Sciences of the United States of America$$v113$$x1091-6490$$y2016
000824053 8564_ $$uhttps://juser.fz-juelich.de/record/824053/files/PNAS-2016-Lanotte-13289-94.pdf$$yRestricted
000824053 8564_ $$uhttps://juser.fz-juelich.de/record/824053/files/PNAS-2016-Lanotte-13289-94.gif?subformat=icon$$xicon$$yRestricted
000824053 8564_ $$uhttps://juser.fz-juelich.de/record/824053/files/PNAS-2016-Lanotte-13289-94.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824053 8564_ $$uhttps://juser.fz-juelich.de/record/824053/files/PNAS-2016-Lanotte-13289-94.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824053 8564_ $$uhttps://juser.fz-juelich.de/record/824053/files/PNAS-2016-Lanotte-13289-94.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824053 8564_ $$uhttps://juser.fz-juelich.de/record/824053/files/PNAS-2016-Lanotte-13289-94.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824053 909CO $$ooai:juser.fz-juelich.de:824053$$pVDB
000824053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157877$$aForschungszentrum Jülich$$b1$$kFZJ
000824053 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000824053 9141_ $$y2016
000824053 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824053 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000824053 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824053 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000824053 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015
000824053 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015
000824053 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824053 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824053 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824053 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000824053 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824053 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000824053 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824053 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000824053 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824053 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824053 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824053 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000824053 980__ $$ajournal
000824053 980__ $$aVDB
000824053 980__ $$aUNRESTRICTED
000824053 980__ $$aI:(DE-Juel1)ICS-2-20110106
000824053 981__ $$aI:(DE-Juel1)IBI-5-20200312
000824053 981__ $$aI:(DE-Juel1)IAS-2-20090406