
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Accelerating Plasma Physics
with GPUs
PADC Annual Workshop 2016

Andreas Herten, Forschungszentrum Jülich, 17 October 2016

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Contents

JuSPIC on GPU
With OpenACC
Not with OpenACC
Performance Model

JuSPIC
Introduction
Stages of Program

Acceleration
Overview
OpenACC
CUDA Fortran
CUDA OpenACC Hybrid
SoA
Speed-Up

Performance Model
Introduction
Bandwidth
Clock Frequency
Normalization

Conclusion
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 2 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JuSPIC: Introduction
man juspic

JuSPIC: Jülich Scalable Particle-in-Cell Code
Based on PSC by H. Ruhl
Developed at JSC by
SimLab Plasma Physics
3D electromagnetic Particle-in-Cell
Properties
— Solves relat. Vlasov equations,

Maxwell equations
— Scheme: Finite-difference

time-domain
— Cartesian geometry
— Arbitrary number of

particle species

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 3 30

http://www.plasma-simulation-code.net/index.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JuSPIC: Technologies
A quite parallel code

Modern Fortran
Distributed withMPI
Domain decomposition: 3D
CPU-parallelized with OpenMP
Domain decomposition: Slices
Particles connected by linked list
High-Q Club:
Scales to full JUQUEEN

A B A B

OpenMP

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 4 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Stages of Program

GPU 3

GPU 3

Pusher

Reducer

GPU

GPU

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 5 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 6 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Accelerating JuSPIC
Start of the journey

Initial requirements
— Leverage parallelism offered by GPUs
— Still work on all platforms
— Optimizations not solely for GPUs
→ OpenACC

Profiling
1 Particle Reducer (64 %)
2 Particle Pusher (32 %)
3 Maxwell Solver (1 %)

OpenACC:
Many cores with pragmas
(Not) like OpenMP
NVIDIA, AMD, …
PGI, Cray, GCC
C, Fortran

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 7 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Maxwell Solver
Straight forward

Content of function: Update E⃗ and B⃗ fields
Global data handling
Source example
!$acc kernels loop collapse(3) present(e,b,ji)
do i3=i3mn-1,i3mx+1

do i2=i2mn-1,i2mx+1
do i1=i1mn-1,i1mx+1

e(i1,i2,i3)%X=e(i1,i2,i3)%X +
cny*(b(i1,i2,i3)%Z-b(i1,i2-1,i3)%Z) -
cnz*(b(i1,i2,i3)%Y-b(i1,i2,i3-1)%Y) -
0.5*dt*ji(i1,i2,i3)%X

↪→

↪→

↪→

! ...

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 8 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Maxwell Solver
Straight forward

Content of function: Update E⃗ and B⃗ fields
Global data handling
Source example
!$acc kernels loop collapse(3) present(e,b,ji)
do i3=i3mn-1,i3mx+1

do i2=i2mn-1,i2mx+1
do i1=i1mn-1,i1mx+1

e(i1,i2,i3)%X=e(i1,i2,i3)%X +
cny*(b(i1,i2,i3)%Z-b(i1,i2-1,i3)%Z) -
cnz*(b(i1,i2,i3)%Y-b(i1,i2,i3-1)%Y) -
0.5*dt*ji(i1,i2,i3)%X

↪→

↪→

↪→

! ...

advance_e_vol:
1410, Generating present(e(:,:,:),b(:,:,:),ji(:,:,:))
1412, Loop is parallelizable
1414, Loop is parallelizable
1415, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code

1412, !$acc loop gang, vector(128) collapse(3) ! blockidx%x threadidx%x
1414, ! blockidx%x threadidx%x collapsed
1415, ! blockidx%x threadidx%x collapsed

3
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 8 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Particle Pusher
Start of a journey…

Content of function:
Interpolate field, update particle position andmomentum
Change to source: Linked list of particles→ array of particles
Timings
CPU: Intel Xeon Sandy Bridge (2 GHz), noMPI, no OpenMP
GPU:NVIDIA Tesla K40, ECC enabled

Ru
nt

im
e

/
µs

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 9 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration with OpenACC
This should be easy, right?

Simple addition in front of code
!$acc parallel loop private(pp,root,qi,mi,wi) present(e,

b) copy(list_of_particles)↪→

do i_particle = loop_min, loop_max
x_(:)=list_of_particles(i_particle)%vec(:)
p_(:)=list_of_particles(i_particle)%pvec(:)
qi =list_of_particles(i_particle)%q

mi=p_prop(list_of_particles(i_particle)%id)%m
wi=p_prop(list_of_particles(i_particle)%id)%w

root=1.0/sqrt(1.0+sum(p_**2))
!...

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 10 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration with OpenACC
This should be easy, right?

Simple addition in front of code
!$acc parallel loop private(pp,root,qi,mi,wi) present(e,

b) copy(list_of_particles)↪→

do i_particle = loop_min, loop_max
x_(:)=list_of_particles(i_particle)%vec(:)
p_(:)=list_of_particles(i_particle)%pvec(:)
qi =list_of_particles(i_particle)%q

mi=p_prop(list_of_particles(i_particle)%id)%m
wi=p_prop(list_of_particles(i_particle)%id)%w

root=1.0/sqrt(1.0+sum(p_**2))
!...

push_particle_2d_2_3:
875, include 'pic.in.gpu.minimallyunrolled.F90'

254, Generating present(e(:,:,:),b(:,:,:))
Generating copy(list_of_particles(:))
Accelerator kernel generated
Generating Tesla code
255, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

254, Generating copyout(tvec3(:),tvec2(:),tvec1(:))
Generating copyin(xyzl(2:),p_prop(list_of_particles%id))
Generating copyout(x_(:),p_(:),v_(:))
...

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 10 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration with OpenACC
This should be easy, right?

Simple addition in front of code
!$acc parallel loop private(pp,root,qi,mi,wi) present(e,

b) copy(list_of_particles)↪→

do i_particle = loop_min, loop_max
x_(:)=list_of_particles(i_particle)%vec(:)
p_(:)=list_of_particles(i_particle)%pvec(:)
qi =list_of_particles(i_particle)%q

mi=p_prop(list_of_particles(i_particle)%id)%m
wi=p_prop(list_of_particles(i_particle)%id)%w

root=1.0/sqrt(1.0+sum(p_**2))
!...

End pusher: 92
Start reducer
[zam449:24737] *** Process received signal ***
[zam449:24737] Signal: Segmentation fault (11)
[zam449:24737] Signal code: Address not mapped (1)
[zam449:24737] Failing at address: 0x693c239f98a0
[zam449:24737] *** End of error message ***

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 10 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration with OpenACC
Well…

Ru
nt

im
e

/
µs

Ru
nt

im
e

/
µs

7
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 11 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC?
At least a working version?!

Changes for a running PGI OpenACC program
— Unroll some operations on arrays

PGI compiler silently/automatically generates temporary variables which it stumbles
over during OpenACC translation step
x_(1)=list_of_particles(i_particle)%vec(1)
x_(2)=list_of_particles(i_particle)%vec(2)
x_(3)=list_of_particles(i_particle)%vec(3)
p_(1)=list_of_particles(i_particle)%pvec(1)
! ...

— Explicitly stage private variables
!$acc loop private(bvp,x_,hh,jj,t,...

— Limit number of threads!
Toomuch state?!

!$acc num_gangs(2) vector_length(8)

→ Slow!?

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 12 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC?
Slow!

Ru
nt

im
e

/
µs

Ru
nt

im
e

/
µs

…?!
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 13 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCwith Speedup
Finally!

Changes for a fast PGI OpenACC program
— Replace all arrays with scalars, all operations on arrays with scalar

operations
Preprocessor macros to the rescue!

xi_1 = list_of_particles(i_particle)%vec(1)
xi_2 = list_of_particles(i_particle)%vec(2)
xi_3 = list_of_particles(i_particle)%vec(3)
pi_1 = list_of_particles(i_particle)%pvec(1)
! ...

— No limiting of threads, straight-forward !$acc statement

Not much Fortran left

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 14 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCwith Speedup
Finally!

Changes for a fast PGI OpenACC program
— Replace all arrays with scalars, all operations on arrays with scalar

operations
Preprocessor macros to the rescue!

xi_1 = list_of_particles(i_particle)%vec(1)
xi_2 = list_of_particles(i_particle)%vec(2)
xi_3 = list_of_particles(i_particle)%vec(3)
pi_1 = list_of_particles(i_particle)%pvec(1)
! ...

— No limiting of threads, straight-forward !$acc statement

Not much Fortran left

push_particle_2d_2_3:
875, include 'pic.in.gpu.fullyunrolled.F90'

268, Generating present(e(:,:,:),b(:,:,:))
Generating copy(list_of_particles(:))
Accelerator kernel generated
Generating Tesla code
269, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

268, Generating copyin(p_prop(list_of_particles%id))

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 14 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC!
It’s faster!

Ru
nt

im
e

/
µs

3
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 15 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Fortran
Let’s bring out the big guns

At this point, code closer to rewritten C code than to original code
Not very OpenACC-ish
Different approach: CUDA Fortran!
Can also be portablewith pre-processor guards
#ifdef _CUDA
i = blockDim%x * (blockIdx%x - 1) + threadIdx%x

#else
do i = lbound(a, 1), ubound(a, 1)

#endif

Original code can be kept!

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 16 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Fortran!
A good time!

Ru
nt

im
e

/
µs

3
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 17 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Hybrid CUDA OpenACC
Mingling

Already in last version:
OpenACC Maxwell Solver, helper data (scalars, 3D vectors, fields)

CUDA Particle Pusher, particle momenta / positions
→ Evaluation of

— Full data handling with OpenACC
— Full data handling with OpenACC, pinned host memory

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 18 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC data handling
OpenACC copy is reasonable

Ru
nt

im
e

/
µs

3/7
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 19 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Structure of Particles
AoS→ SoA

Original data structure: Array of structs (AoS)
type particle

sequence
real(dp_kind) :: vec(3), pvec(3)

end type particle
type(particle), dimension(:), allocatable ::

list_of_particles↪→

Align data for coalesced GPU access (SoA)
type posmom

real(dp_kind), dimension(:), allocatable :: x, y, z, px,
py, pz↪→

end type posmom
type(posmom) :: soa_list_of_particles

Data only re-allocated when size changes

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 20 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SoA Data Layout
Worth only if data is touched anyway

Ru
nt

im
e

/
µs

3
Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 21 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
CUDA Fortran (Full, SoA)

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 22 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Speed-Up
Kernel to CPU; Full pusher toOpenACC

Ru
nt

im
e

/
µs

5×

10×

15×

20×

Speedup of Kernel, relative to No-GPU
Speedup of full Pusher, relative to OpenACC (min. unrolled)

24×
21×21×21×

3×

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 23 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Model

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 24 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction
Some information

Simple information exchangemodel

t(Npart) = α+ I(Npart)/β

Npart Number of particles processed
t Duration of execution (in s)
I Amount of information exchanged (in B)
α Offset (zero-data latency); fit parameter
β Slope (effective bandwidth); fit parameter

Hypothesis: JuSPIC’s GPU performance is largely limited by
available bandwidth

→ β is lower limit of exploited bandwidth

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 25 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Bandwidth Determination
GPU clock fixed to maximum value

0 10 20 30 40 50
Information Exchange I / MB

0

100

200

300

400

500

600

M
in

im
um

 K
er

ne
l D

ur
at

io
n
t

/
µs

Fit parameters

K20: t= 19. 05 + I/0. 073

K40: t= 14. 97 + I/0. 091

½ K80: t= 14. 5 + I/0. 095

0 10 20 30 40 50
Information Exchange I / MB

0

100

200

300

400

500

600

M
in

im
um

 K
er

ne
l D

ur
at

io
n
t

/
µs

Fit parameters

K20: t= 19. 05 + I/0. 073

K40: t= 14. 97 + I/0. 091

½ K80: t= 14. 5 + I/0. 095

P100: t= 30. 5 + I/0. 27

K20: 71 GB/s
K40: 89 GB/s

½ K80: 93 GB/s
P100: 263 GB/s

P100

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 26 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Bandwidth vs. Clock Frequency
Graphics clock frequency

500 550 600 650 700 750 800 850 900
Graphics Clock Frequency / MHz

65

70

75

80

85

90

95

Ef
fe

ct
iv

e
Ba

nd
w

id
th

 /
 G

B/
s

0.128 GB/s / MHz

0.034 GB/s / MHz

0.098 GB/s / MHz

GPUs

K40
½ K80

Two regions?!

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 27 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

STREAM Bandwidth
As ameans of normalization

500 550 600 650 700 750 800 850 900
Graphics Clock Frequency / MHz

60

80

100

120

140

160

180

200

220

Ef
fe

ct
iv

e
Ba

nd
w

id
th

 /
 G

B/
s

GPUs

K40
½ K80
STREAM Copy (K40)
STREAM Copy (K80)

Structure already there

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 28 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Normalized Clock-dependent Bandwidth
Bandwidth vs. Clock Frequency, normalized to STREAM results

500 550 600 650 700 750 800 850 900
Graphics Clock Frequency / MHz

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Re
la

tiv
e

Ba
nd

w
id

th
 /

 R
el

. U
ni

ts

GPUs

K40
½ K80

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 29 30

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Results & Conclusions

Performance Model
— Information exchangemodel: JuSPIC not bandwidth-limited
→ Further investigation needed (Computation? Latency?)
— Peculiar: steps in STREAM (K80); valley of efficiency (K80, K40)
— More byte per clock cycle for ½K80 (before step)

Porting with OpenACC
— JuSPIC’s Fortran too complicated for OpenACC (7 bugs with PGI…)
— CUDA Fortran also portable, closer to original code
— Mixing OpenACC and CUDA Fortran feasible
— ½ of computing-heavy functions ported; promising results
⇒ Full effect only if H↔D copies reduced→ NVLink!Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | JuSPIC with OpenACC | 17 October 2016 # 30 30

mailto:a.herten@fz-juelich.de

	JuSPIC
	Introduction
	Stages of Program

	Acceleration
	Overview
	OpenACC
	CUDA Fortran
	CUDA OpenACC Hybrid
	SoA
	Speed-Up

	Performance Model
	Introduction
	Bandwidth
	Clock Frequency
	Normalization

	Conclusion

