000824139 001__ 824139
000824139 005__ 20240711092242.0
000824139 0247_ $$2doi$$a10.1021/acs.energyfuels.6b00957
000824139 0247_ $$2WOS$$aWOS:000381778500030
000824139 037__ $$aFZJ-2016-06760
000824139 082__ $$a620
000824139 1001_ $$0P:(DE-HGF)0$$aHusmann, M.$$b0
000824139 245__ $$aApplication of BaO-Based Sulfur Sorbent for In-Situ Desulfurization of Biomass Derived Syngas
000824139 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2016
000824139 3367_ $$2DRIVER$$aarticle
000824139 3367_ $$2DataCite$$aOutput Types/Journal article
000824139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480076444_10107
000824139 3367_ $$2BibTeX$$aARTICLE
000824139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824139 3367_ $$00$$2EndNote$$aJournal Article
000824139 520__ $$aA novel BaO-based sorbent is tested for in situ application as desulfurization agent in an allothermal biomass gasification process. BaO is stabilized against the formation of carbonate and thus theoretically allows desulfurization down to a few parts per million (volume) (ppmv) H2S even for high-steam and high-temperature conditions. In real process application, sintering of the sorbent occurred and had to be prevented by the addition of lime as separating agent. Additionally, a kinetic limitation of the desulfurization with BaO was shown for the in-bed sorption of sulfur. An increase of gasification temperature from 760 to 810 °C significantly improved the desulfurization performance. The observed behavior is in contrast to that of previously tested CaO-based in situ sorbents. CaO-based in situ desulfurization is limited to values of about 500 ppmv H2S for the conditions prevailing in the gasifier. With the novel BaO-based sorbent, a desulfurization from 85 to 35 ppmv residual H2S is shown upon addition of the sorbent to the gasifier. In experiments with a combined desulfurization of CaO and BaO, a release of H2S from CaS was shown once the H2S content in the gas drops below the CaO-based steady-state equilibrium of desulfurization. Particle analysis via SEM-EDX, XRD, ICP-OES, and BET complement the results of in situ desulfurization. SEM-EDX results indicate the stabilization of BaO in sintering bridges and a certain depletion of barium from the sorbent after in-bed application.
000824139 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000824139 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b1$$eCorresponding author$$ufzj
000824139 7001_ $$0P:(DE-HGF)0$$aZuber, C.$$b2
000824139 7001_ $$0P:(DE-HGF)0$$aKienberger, T.$$b3
000824139 7001_ $$0P:(DE-HGF)0$$aMaitz, V.$$b4
000824139 7001_ $$0P:(DE-HGF)0$$aHochenauer, C.$$b5
000824139 773__ $$0PERI:(DE-600)1483539-3$$a10.1021/acs.energyfuels.6b00957$$n8$$p6458-6466$$tEnergy & fuels$$v30$$x0887-0624$$y2016
000824139 8564_ $$uhttps://juser.fz-juelich.de/record/824139/files/acs.energyfuels.6b00957.pdf$$yRestricted
000824139 8564_ $$uhttps://juser.fz-juelich.de/record/824139/files/acs.energyfuels.6b00957.gif?subformat=icon$$xicon$$yRestricted
000824139 8564_ $$uhttps://juser.fz-juelich.de/record/824139/files/acs.energyfuels.6b00957.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824139 8564_ $$uhttps://juser.fz-juelich.de/record/824139/files/acs.energyfuels.6b00957.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824139 8564_ $$uhttps://juser.fz-juelich.de/record/824139/files/acs.energyfuels.6b00957.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824139 8564_ $$uhttps://juser.fz-juelich.de/record/824139/files/acs.energyfuels.6b00957.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824139 909CO $$ooai:juser.fz-juelich.de:824139$$pVDB
000824139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b1$$kFZJ
000824139 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000824139 9141_ $$y2016
000824139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824139 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG FUEL : 2015
000824139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824139 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824139 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824139 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824139 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824139 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824139 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000824139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824139 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000824139 980__ $$ajournal
000824139 980__ $$aVDB
000824139 980__ $$aUNRESTRICTED
000824139 980__ $$aI:(DE-Juel1)IEK-2-20101013
000824139 981__ $$aI:(DE-Juel1)IMD-1-20101013