001     824141
005     20240711092243.0
024 7 _ |a 10.1016/j.fuel.2016.09.078
|2 doi
024 7 _ |a WOS:000386187100041
|2 WOS
037 _ _ |a FZJ-2016-06762
082 _ _ |a 660
100 1 _ |a Seebold, Sören
|0 P:(DE-Juel1)161590
|b 0
|e Corresponding author
245 _ _ |a The Influence of Crystallization on the Flow of Coal Ash-Slags
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480068279_10117
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Numerous technical applications in the energy and metallurgical industries demand a fundamental knowledge of the flow of slags. In particular, the operation of an entrained flow gasifier is challenging, as the oxide slag has to be reliably discharged. Crystallization in the slag influences strongly the flow behavior of the slag because precipitations occur. In this study, the process of crystallization during flow of two coal ash slags was investigated. Therefore, isothermal viscosity measurements were conducted in order to examine the rheological evolution over time caused by the crystallization. It has been demonstrated that the evolution of viscosity of a sub-liquidus melt depends strongly on time, as well as on temperature and composition. Using a rotational high-temperature viscometer to investigate coal slags, it was found that the crystallization during flow could be separated into three time regimes: a lag-time, in which the undercooled melt behaved as an Arrhenius-liquid; the kinetic-driven crystallization; and, finally, the rheological equilibrium that is represented by a constant viscosity. Furthermore, an increase of relative viscosity caused by crystallization was accompanied by a shift from Newtonian to non-Newtonian flow; here, pseudoplastic flow indicated the existence of precipitations. The results demonstrate that the flow behavior has to be divided into dilute, semi-concentrated and concentrated particle bearing fluids. A view into the morphology of the partly crystallized slag was taken by scanning electron microscope. Differential thermal analysis of the slags was conducted, to underline the results of the isothermal viscosity measurements. The degree of supercooling promotes the kinetics of crystallization. Our results demonstrate that time-dependency has to be considered for an accurate description of flow during crystallization, as well as the influence of degree of supercooling.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
700 1 _ |a Wu, Guixuan
|0 P:(DE-Juel1)145147
|b 1
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 2
773 _ _ |a 10.1016/j.fuel.2016.09.078
|0 PERI:(DE-600)1483656-7
|p 376-387
|t Fuel
|v 187
|y 2017
|x 0016-2361
856 4 _ |u https://juser.fz-juelich.de/record/824141/files/1-s2.0-S0016236116309413-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/824141/files/1-s2.0-S0016236116309413-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/824141/files/1-s2.0-S0016236116309413-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/824141/files/1-s2.0-S0016236116309413-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/824141/files/1-s2.0-S0016236116309413-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/824141/files/1-s2.0-S0016236116309413-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:824141
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161590
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145147
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUEL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21