001     824160
005     20250129092439.0
037 _ _ |a FZJ-2016-06781
041 _ _ |a English
100 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 4th International Workshop on Induced Polarization
|g IP2016/4th
|c Aarhus
|d 2016-06-06 - 2016-06-08
|w Denmark
245 _ _ |a Numerical correction of phase errors due to leakage currents in wideband EIT measurements.
260 _ _ |c 2016
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1481639270_20893
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Advanced model-based data correction methods are needed in order to determine the small phase response of low-polarizable soils and rocks in the higher frequency range up to 10 kHz. Methods have been developed to correct several system-dependent errors, such as amplification errors, signal drift, current measurement errors, potential measurement errors due to high electrode impedances, propagation delay of the signal due to the long cables, and phase errors introduced by inductive coupling between the electrode cables. However, measurements at test sites with high resistivity have shown a new dominating phase error, which was found to be related to capacitive leakage currents between system ground and the soil. In order to correct this error, we enhanced the FEM modelling used for the reconstruction of the electrical conductivity distribution. Using this new formulation of the FEM forward model, this source of error was reduced by a factor of five or more. This enables an electrical conductivity reconstruction for frequencies up to 10 kHz. In future work, it will be investigated whether the capacitive leakage currents can be reduced by optimization of the cable layout. In any case, it is helpful to use the leakage current as a proxy for data error during data filtering, and it can also be used to decide if the enhanced FEM model presented here should be used.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Huisman, Johan Alexander
|0 P:(DE-Juel1)129472
|b 1
|u fzj
700 1 _ |a Mester, Achim
|0 P:(DE-Juel1)140421
|b 2
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
|u fzj
856 4 _ |u http://hgg.au.dk/fileadmin/www.gfs.au.dk/DIV/Abstracts_from_Session_B.pdf
909 C O |o oai:juser.fz-juelich.de:824160
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21