000824164 001__ 824164
000824164 005__ 20210129224956.0
000824164 0247_ $$2doi$$a10.4067/S0718-95162016005000041
000824164 0247_ $$2Handle$$a2128/15829
000824164 037__ $$aFZJ-2016-06785
000824164 041__ $$aEnglish
000824164 082__ $$a580
000824164 1001_ $$0P:(DE-HGF)0$$aRedel, Y.$$b0
000824164 245__ $$aAssessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils
000824164 260__ $$aTemuco$$c2016
000824164 3367_ $$2DRIVER$$aarticle
000824164 3367_ $$2DataCite$$aOutput Types/Journal article
000824164 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510303594_27057
000824164 3367_ $$2BibTeX$$aARTICLE
000824164 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824164 3367_ $$00$$2EndNote$$aJournal Article
000824164 520__ $$aVolcanic ash derived soils represent between 50-60% of the total arable land area of southern of Chile, and they are the most important soils for pasture production. In these soils, high phosphorus (P) fixation and, in turn, low P availability and high aluminium (Al) soluble concentrations (at low pH) are the most limiting factors for pasture production. At the same time, the complexes between Al-or iron- (Fe) and organic matter as well as short-range order alumino-silicates (allophane) allow the retention of huge quantities of soil P. The aim of this work was to assess the status of P by both sequential extraction procedure (Hedley) and 31P-NMR analysis as influenced by Al and Fe in volcanic grasslands Andisols (Pemehue, Gorbea, Piedras Negras and Llastuco Soil Series) from Southern Chile. We applied Hedley chemical sequential fractionation to soils in order to examine the potential differences in extractable soil inorganic P (Pi) and organic P (Po) fractions. We also determined total P and Olsen P in these grassland Andisols. Oxalate and pyrophosphate were employed to determine the active and organic matter complexed Al and Fe, respectively. Furthermore, we quantified Al and Fe in extracts of the Hedley P fractions. We found that Al extracted in oxalate was correlated positively with labile Po concentration, specifically with both the NaHCO3-Po(r=0.45, P≤0.01), and the NaOH-Po (r=0.43, P≤0.01) fractions. This observation was reinforced by 31P-NMR analysis that showed higher monoester P and myo-IP6 content in soils with higher amounts of oxalate Al. Hedley sequential fractionation procedure confirmed the role of Al in the NaOH-Po fraction for promoting Po storage, as both fractions were correlated (r=0.33, P≤0.05). In addition, Fe plays a substantial role in recalcitrant P accumulation as we found a high correlation between residual P and oxalate Fe (r=0.55, P≤0.01).
000824164 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000824164 7001_ $$0P:(DE-HGF)0$$aCartes, P.$$b1
000824164 7001_ $$0P:(DE-HGF)0$$aDemanet, R.$$b2
000824164 7001_ $$0P:(DE-HGF)0$$aVelásquez, G.$$b3
000824164 7001_ $$0P:(DE-HGF)0$$aPoblete-Grant, P.$$b4
000824164 7001_ $$0P:(DE-Juel1)145865$$aBol, R.$$b5$$eCorresponding author
000824164 7001_ $$0P:(DE-HGF)0$$aMora, M. L.$$b6
000824164 773__ $$0PERI:(DE-600)2611093-3$$a10.4067/S0718-95162016005000041$$n2$$p490-506$$tJournal of soil science and plant nutrition$$v16$$x0717-635X$$y2016
000824164 8564_ $$uhttps://juser.fz-juelich.de/record/824164/files/aop4116-1.pdf$$yOpenAccess
000824164 8564_ $$uhttps://juser.fz-juelich.de/record/824164/files/aop4116-1.gif?subformat=icon$$xicon$$yOpenAccess
000824164 8564_ $$uhttps://juser.fz-juelich.de/record/824164/files/aop4116-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824164 8564_ $$uhttps://juser.fz-juelich.de/record/824164/files/aop4116-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824164 8564_ $$uhttps://juser.fz-juelich.de/record/824164/files/aop4116-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824164 8564_ $$uhttps://juser.fz-juelich.de/record/824164/files/aop4116-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824164 909CO $$ooai:juser.fz-juelich.de:824164$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000824164 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b5$$kFZJ
000824164 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000824164 9141_ $$y2016
000824164 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824164 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SOIL SCI PLANT NUT : 2015
000824164 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000824164 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824164 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824164 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824164 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824164 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824164 920__ $$lyes
000824164 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000824164 980__ $$ajournal
000824164 980__ $$aVDB
000824164 980__ $$aUNRESTRICTED
000824164 980__ $$aI:(DE-Juel1)IBG-3-20101118
000824164 9801_ $$aFullTexts