000824231 001__ 824231
000824231 005__ 20240610120430.0
000824231 0247_ $$2doi$$a10.1021/acsami.6b05581
000824231 0247_ $$2ISSN$$a1944-8244
000824231 0247_ $$2ISSN$$a1944-8252
000824231 0247_ $$2WOS$$aWOS:000382514100078
000824231 037__ $$aFZJ-2016-06850
000824231 082__ $$a540
000824231 1001_ $$0P:(DE-Juel1)136933$$aJin, Jiehong$$b0
000824231 245__ $$aDense, Regular GaAs Nanowire Arrays by Catalyst-Free Vapor Phase Epitaxy for Light Harvesting
000824231 260__ $$aWashington, DC$$bSoc.$$c2016
000824231 3367_ $$2DRIVER$$aarticle
000824231 3367_ $$2DataCite$$aOutput Types/Journal article
000824231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481202410_21511
000824231 3367_ $$2BibTeX$$aARTICLE
000824231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824231 3367_ $$00$$2EndNote$$aJournal Article
000824231 520__ $$aDensity dependent growth and optical properties of periodic arrays of GaAs nanowires (NWs) by fast selective area growth MOVPE are investigated. As the period of the arrays is decreased from 500 nm down to 100 nm, a volume growth enhancement by a factor of up to four compared with the growth of a planar layer is observed. This increase is explained as resulting from increased collection of precursors on the side walls of the nanowires due to the gas flow redistribution in the space between the NWs. Normal spectral reflectance of the arrays is strongly reduced compared with a flat substrate surface in all fabricated arrays. Electromagnetic modeling reveals that this reduction is caused by antireflective action of the nanowire arrays and nanowire-diameter dependent light absorption. Irrespective of the periodicity and diameter, Raman scattering and grazing angle X-ray diffraction show signal from zinc blende and wurtzite phases, the latter originating from stacking faults as observed by high resolution transmission electron microscopy. Raman spectra contain intense surface phonons peaks, whose intensity depends strongly on the nanowire diameters as a result of potential structural changes and as well as variations of optical field distribution in the nanowires.
000824231 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000824231 588__ $$aDataset connected to CrossRef
000824231 7001_ $$0P:(DE-HGF)0$$aStoica, Toma$$b1
000824231 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b2
000824231 7001_ $$0P:(DE-HGF)0$$aChen, Yang$$b3
000824231 7001_ $$0P:(DE-HGF)0$$aAnttu, Nicklas$$b4
000824231 7001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b5
000824231 7001_ $$0P:(DE-HGF)0$$aKawabata, Rudy$$b6
000824231 7001_ $$0P:(DE-HGF)0$$aBuenconsejo, Pio J. S.$$b7
000824231 7001_ $$0P:(DE-HGF)0$$aLam, Yeng M.$$b8
000824231 7001_ $$0P:(DE-Juel1)140174$$aHaas, Fabian$$b9
000824231 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b10
000824231 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b11
000824231 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b12$$eCorresponding author$$ufzj
000824231 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.6b05581$$gVol. 8, no. 34, p. 22484 - 22492$$n34$$p22484 - 22492$$tACS applied materials & interfaces$$v8$$x1944-8252$$y2016
000824231 8564_ $$uhttps://juser.fz-juelich.de/record/824231/files/acsami.6b05581.pdf$$yRestricted
000824231 8564_ $$uhttps://juser.fz-juelich.de/record/824231/files/acsami.6b05581.gif?subformat=icon$$xicon$$yRestricted
000824231 8564_ $$uhttps://juser.fz-juelich.de/record/824231/files/acsami.6b05581.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824231 8564_ $$uhttps://juser.fz-juelich.de/record/824231/files/acsami.6b05581.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824231 8564_ $$uhttps://juser.fz-juelich.de/record/824231/files/acsami.6b05581.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824231 8564_ $$uhttps://juser.fz-juelich.de/record/824231/files/acsami.6b05581.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824231 909CO $$ooai:juser.fz-juelich.de:824231$$pVDB
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136933$$aForschungszentrum Jülich$$b0$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich$$b1$$kFZJ
000824231 9101_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$6P:(DE-Juel1)128856$$aPGI-8-PT$$b2$$kPGI-8-PT
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159136$$aForschungszentrum Jülich$$b5$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162144$$aForschungszentrum Jülich$$b6$$kFZJ
000824231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
000824231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich$$b9$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich$$b10$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
000824231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b12$$kFZJ
000824231 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000824231 9141_ $$y2016
000824231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824231 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000824231 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000824231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824231 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824231 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824231 920__ $$lyes
000824231 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000824231 9201_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$kPGI-8-PT$$lPGI-8-PT$$x1
000824231 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x2
000824231 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000824231 980__ $$ajournal
000824231 980__ $$aVDB
000824231 980__ $$aUNRESTRICTED
000824231 980__ $$aI:(DE-Juel1)PGI-9-20110106
000824231 980__ $$aI:(DE-Juel1)PGI-8-PT-20110228
000824231 980__ $$aI:(DE-Juel1)PGI-5-20110106
000824231 980__ $$aI:(DE-82)080009_20140620
000824231 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000824231 981__ $$aI:(DE-Juel1)PGI-8-PT-20110228
000824231 981__ $$aI:(DE-Juel1)PGI-5-20110106