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Hidden quantum phase transition in Mn1−xFexGe evidenced by small-angle neutron scattering
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The magnetic system of the Mn1−xFexGe solid solution is ordered in a spiral spin structure in the whole

concentration range of x ∈ [0 ÷ 1]. The close inspection of the small-angle neutron-scattering data reveals the

quantum phase transition from the long-range ordered to short-range ordered helical structure upon increase of Fe

concentration at x ∈ [0.25 ÷ 0.4]. The short-range order (SRO) of the helical structure is identified as a Lorentzian

contribution, while long-range order is associated with the Gaussian contribution into the scattering profile

function. The scenario of the quantum phase transition with x as a driving parameter is similar to the thermal phase

transition in pure MnGe. The quantum nature of the SRO is proved by the temperature-independent correlation

length of the helical structure at low- and intermediate-temperature ranges with remarkable decrease above certain

temperature TQ. We suggest the x-dependent modification of the effective Ruderman-Kittel-Kasuya-Yosida

exchange interaction within the Heisenberg model of magnetism to explain the quantum critical regime in

Mn1−xFexGe.
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The cubic B20-type compounds (MnSi, etc.) are well

known for the incommensurate magnetic structures with

a very long period appearing due to noncentrosymmetric

arrangement of magnetic atoms. It is widely recognized

that the helix spin structure is built on the hierarchy of

interactions: ferromagnetic exchange interaction, antisym-

metric Dzyaloshinskii-Moryia interaction (DMI), and the

anisotropic exchange interaction [1,2]. It is also known that

the substitution of manganese by iron in the isostructural solid

solutions Mn1−xFexSi suppresses the helical spin state [3]. The

neutron-scattering studies [4,5] together with magnetic data

and specific-heat measurements [3,6,7] discovered a quantum

critical point (QCP) corresponding to the suppression of the

spin spiral phase with long-range order (LRO) in Mn1−xFexSi.

This QCP located at xc1 ≈ 0.11 − 0.12 is, however, hidden by

a short-range order (SRO) of the spin helix [5–7] that agrees

well with the theoretical models [8,9]. The SRO phase of

magnetic helix is sometimes referred to a chiral spin liquid [8]

and is destroyed at the second QCP xc2 ≈ 0.24. Thus it has

been shown that Mn1−xFexSi undergoes a sequence of the two

quantum phase transitions [7].

The real breakthrough in understanding of the experimental

facts mentioned above has been done via scrutinizing the Hall

effect in Mn1−xFexSi [10]. It was found that the substitution

of Mn with Fe results rather in the hole doping opposite

to the natural expectations on the electron doping. The two

groups of the charge carriers contribute to the Hall effect and

the ratio between them changes the sign of the Hall effect

constants at xc1 ≈ 0.11, what is definitely associated with

the QCP in these compounds. Despite the fact that the solid

solutions of Mn1−xFexSi are often considered as itinerant mag-

nets [8,9], recent magnetic resonance and magnetoresistance

studies [11,12] favor the alternative explanation based on the

Heisenberg localized magnetic moments model of Mn ions.

Furthermore the discovered inversion of the Hall constants

should result in the modulation of the effective Ruderman-

Kittel-Kasuya-Yosida (RKKY) exchange interaction within

the Heisenberg model of magnetism. Considering the MnSi

as a DMI-based helimagnet, the role of RKKY interaction is

to compete with the DMI and serve as a tool for destabilization

of the helical structure at xc1.

In this paper we focus on the similarly hidden quantum

phase transition in Mn1−xFexGe compounds. Since the mag-

netic system is ordered in a spiral spin structure in the whole

concentration range of x ∈ [0 ÷ 1] [13], we use the small-

angle neutron-scattering (SANS) technique to show that the

LRO is transformed into the SRO upon Mn replacement with

Fe at x ∈ [0.25 ÷ 0.4]. The helix instability of the quantum

nature dominates over the thermal spin helical fluctuations up

to TQF ∼ 60–90 K in the same concentration range. The same

mechanism as in [10] is applied to explain the hidden QPT in

Mn1−xFexGe.

The Mn1−xFexGe solid solution demonstrates intriguing

magnetic properties [13–21]. It was recently shown that the

helix chirality is altered by mixing the two types of magnetic

atoms (Fe and Mn) on the Fe-rich side of the phase diagram

[13,18]. The compounds with x � 0.5 are characterized by

the long period of the helix structure, which becomes infinite

at xc = 0.75, i.e., the compound transforms to ferromagnet.

The change of the helix chirality at xc was also experimentally

observed via the change of the sign of the DM interaction. The

DM interaction is positive for compounds with x < xc and
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negative for compounds with x > xc [13,18]. The ab initio

calculations can reasonably reproduce the experimentally

observed inversion of D in the Mn1−xFexGe close to the xc

[22–24].

In contrast, the compounds of the Mn-rich side of the phase

diagram possess a short period spin helix. The small-angle

neutron scattering [19] and Mössbauer spectroscopy [20] show

that the stable helical structure at T = 0 becomes intrinsically

unstable upon temperature increase. The temperature activates

both unusual spin excitations and helical spin fluctuations,

which result in the phase transition to fluctuating helical state

at TN = 130 ± 2 K. The heli- to paramagnetic phase transition

of the pure MnGe is spread over 100 K above the critical

temperature TN [19], which differs strongly from the scenario

of the phase transition of any B20 compounds [14,21,25].

At present there is a general belief that the ratio between

the ferromagnetic exchange interaction and Dzyaloshinskii-

Moriya interaction should determine the value of the helix

wave vector in MnGe as well as in other B20 compounds. This

belief is based on the well-established description (Bak-Jensen

model) of the MnSi and FeGe [1,2], where ks is rather small

and equal to 0.35 nm−1 for MnSi and 0.09 nm−1 for FeGe.

The value of the helix wave vector for MnGe is, however,

much larger and is equal to ks = 2.2 nm−1 while the value

of the critical field, needed to transform the helimagnet to the

ferromagnetic state, is equal to Hc2 = 15 T. This fact could be

hardly explained within the conventional Bak-Jensen model

for B20 helimagnets [1,2]. The experimental facts shown

below together with relatively small predicted value of DM

interaction in MnGe (at x = 0) [22–24] leads to the conclusion

that the spin helix in MnGe is based on the effective RKKY

interaction. Due to the fact that the magnetic structure of FeGe

is based on DMI, one would expect the transition from RKKY

spin helix to DMI spin helix with x. The x dependence of the

helix wave vector k shows that the helical structure with k ∼

2 nm−1 in the range x � 0.4 is replaced by the structure with

small wave vector of the helix in the range x � 0.5 meaning the

value xc2 ≈ 0.45 as the critical concentration for the transition

from the helical structure based on the effective RKKY inter-

action to the helical structure based on DM interaction [13].

The polycrystalline samples of Mn1−xFexGe compounds

have been synthesized by high pressure method at the Institute

for High Pressure Physics, Troitsk, Moscow, Russia. As it

can be only synthesized under high pressure, the sample

have a polycrystalline form with a crystallite size not less

than 10 microns (see [26] for details). The x-ray powder

diffraction confirmed the B20 structure of the samples used in

the experiments [27]. This study has not revealed a dispersion

of the concentration x larger than 1–2%. The small-angle

neutron scattering has shown that the spinodal decomposition

with the large distribution of x of the order of 5–10% occurs

only within the small fraction of the sample (similar to those

studied in [18]), while most of the sample shows distribution

of the x not larger that 2%. We ascribe the fraction of the

samples with relatively large x distribution to the surface of

the grains in the polycrystalline material. Taking into account

that the diffraction technique averages over the full volume of

the sample, the imperfectness of the samples cannot affect the

intensity profile and prevent one from the evaluation of the

correlation functions.
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FIG. 1. Examples of the neutron-scattering maps for

Mn1−xFexGe compounds with x = 0.0 (a), 0.25 (b), 0.4 (c),

and 0.5 (d) at T = 5 K taken at zero field.

The SANS measurements were carried out at instruments

D11 (ILL, Grenoble, France), SANS-1 [28], and KWS-1 [29]

(FRM-II reactor, Garching, Germany). Neutrons with a mean

wavelength of λ = 0.6 nm were used. The sample-detector

distance of 2 m was set to cover the scattering vector range Q

from 0.7 to 2.7 nm−1 with the resolution equal to 0.1 nm−1.

The scattering intensity is measured upon zero-field cooling

from the paramagnetic phase at T = 300 K to the ordered

phase at T = 5 K.

Figures 1(a)–1(d) show examples of the small-angle

neutron-scattering maps for Mn1−xFexGe compounds with x

from 0.0 to 0.5 at T = 5 K. The typical powderlike images

were detected with anisotropic rings of intensity for samples

with x = 0.0 and 0.2. The observed spots are referred to the

scattering from the relatively large magnetic domains of the

helical spin structure limited by the crystal grains sizes. The

intensity distribution within the ring becomes isotropic with

increase of the iron concentration meaning that the helical

domains break into smaller pieces within the grain.

The scattering intensity I (Q) measured at T = 5 K was

azimuthally averaged and plotted in Fig. 2(a). For better

comparison the intensity was normalized to its maximum

I/IMax. The x dependence of k is presented in Fig. 2(b). The

scattering function (Bragg peak) of the pure MnGe can be

well approximated by the Gaussian [Fig. 2(a)]. The shape

of the scattering function changes upon Mn replacement

with Fe (x ∈ [0.2 ÷ 0.4]) and can only be described by the

pseudo-Voigt function with four different parameters: the

scaling factor IMax, the Lorentz fraction α, the peak position k,

and the width of both Gaussian and Lorentzian functions κ . The

intensity profile can be described again by the pure Gaussian

for compounds with x > 0.5. As one can see from Fig. 2(a),

the peak profile for compound with x = 0.5 is asymmetrical

and more intense on the high-q side of the reflection. As it is

shown in Fig. 2(b) the small shift of the x parameter in case of
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FIG. 2. (a) Momentum transfer dependence of the scattering

intensity at T = 5 K for different Mn1−xFexGe compounds. (b) x

dependence of the helix wave-vector value k [13]. (c) x dependence of

the Lorentzian fraction α in the peak at T = 5 K, which is associated

to the fluctuating helical phase. Lines are the guide for the eyes.

Mn0.5Fe0.5Ge solid solution results in a significant change of

the k value. Thus, this asymmetry of the Bragg reflection can

be obtained as a result of the spinodal decomposition of the

compound [18].

The analysis of the temperature evolution of the scattering

curves for all samples was performed in the same manner as for

pure MnGe. The shape of the Bragg reflection is well described

by the single Gaussian function at low temperatures and x =

0.0 (α = 0). With increase of the temperature or x the profile

is, firstly, transformed into the pseudo-Voight function (0 <

α < 1) and, secondly, is contaminated by additional (abnormal

[19]) scattering at Q < k associated to the inelastic scattering.

Within the high-temperature range or at 0.3 < x < 0.4 the

intensity profile represents the sum of the Lorentzian and

abnormal scattering (α = 1). The characteristic temperatures

related to different regimes decrease smoothly with increase

of the Fe concentration.

The Lorentzian contribution into the scattering corresponds

to the scattering from SRO of the helix structure, while the

Gaussian contribution comes from the LRO [30]. As the Bragg

reflection is well described by the sum of Lorentzian and

Gaussian functions with the same width and peak position,

one can separate the fractions of the helical fluctuations and

the stable helices in the compound. The helical fluctuations

have to have the finite correlation length κ and lifetime τ

which are much smaller than the characteristic parameters

for LRO of helical structure [31]. The x dependence of the

Lorentz fraction α, which can be counted as the fraction of

helical fluctuations, is presented in Fig. 2(c).

The fraction of SRO dominates over the fraction of the

LRO at x > 0.25 [Fig. 2(c)] showing that the LRO of the

stable helix disappears and is gradually replaced by the SRO

at low temperatures. Even if the SRO is ascribed to the helical

fluctuations it could not be considered as the paramagnetic

state of the structure. More accurately this process should be

described similarly to the one observed in pure MnGe as a

function of the temperature [19], where the LRO is gradually

replaced by the SRO with the temperature in the range from

80 K to TN = 130 K, while the helical fluctuations are clearly

observed up to Th = 150 K.

As long as the nature of the disorder is clearly provided

by the Fe replacement of Mn atoms, the origin of SRO at low

temperatures can be explained by the model similar to the

Mn1−xFexSi. In case of Si-based compounds, the Fe doping

results in increase of the hole concentration instead of electron

concentration which is considered as the driving force for

tuning the quantum critical regime via modifying the effective

Ruderman-Kittel-Kasuya-Yosida exchange interaction within

the Heisenberg model of magnetism [10]. This model should

be inverted for Mn1−xFexGe compounds. The LRO of the helix

structure is built on the main effective RKKY interaction and

small DMI constant for the pure MnGe. The RKKY interaction

decreases and DMI increases with x that leads to the quantum

phase transition through SRO of the helix fluctuations at x >

0.25. This model does not contradict the experimental data

obtained either in this work or in any others provided till the

present time.

Another evidence of the competition between different

interactions that built helical order is the evolution of the corre-

lation length of the structure. The estimation of the correlation

length and the size of the incommensurate magnetic helix

is always limited by the resolution of the SANS instrument

ξmax. For systems with the LRO (ξ > ξmax) the width of

the peak is always equal to the the instrumental resolution

κres = 2π/ξmax. For systems with the SRO, the correlation

length is smaller than the instrument resolution ξ < ξmax and

fits ideally within the scope of the SANS instrument. The

width of the peak κ is considered as an inverse correlation

length of the magnetic structure ξ = 2π/κ . The temperature

dependence of the inverse correlation length κ is presented in

Fig. 3 for Mn1−xFexGe with x = 0.0, 0.25, and 0.3.

The inverse correlation length κ of the helical fluctuations

is expected to increase with temperature close to the order-

disorder magnetic phase transition meaning the decrease of

the correlation length of the fluctuations. Such behavior is

well seen in Fig. 3. Nevertheless, the helical fluctuations

are also observed at low temperatures for Mn1−xFexGe with

x > 0.2 [Fig. 2(c)]. The correlation length ξ = 2π/κ of the

helical fluctuations remains constant but still smaller than the

highest reachable value for the SANS instrument (ξ < ξmax)

in a wide temperature range (Fig. 3). The existence of two

different temperature regimes implies the different states of

the magnetic system: the thermal spin helix fluctuations,

which evolve with temperature, and the T -independent type

of the SRO at low temperatures. We define the crossover

temperature of these two regimes as TQF. The examples of such

determination of the crossover temperatures TQF are presented
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FIG. 3. Temperature dependence of the inverse correlation length

of helical fluctuations, κ = 1/ξ , for Mn1−xFexGe with x = 0.0, 0.25,

and 0.3. Lines are the guide for the eyes.

in Fig. 3. Due to the fact that the correlation lengths of the

helical fluctuations are temperature independent at T < TQF

we consider the fluctuations to be of the quantum nature,

since there should be another reason but the temperature

that decreases the correlation length of the fluctuation. If

one suggests only temperature as the energy regulating the

correlation length of the fluctuation, then the size of the

helical fluctuation should increase infinitely with T → Tc

while Tc → 0 with x. For example, such tendency can be

seen for compounds with x = 0.3 (Fig. 3). Nevertheless, the

increase of the correlation length of the helical fluctuation with

decrease of the temperature appears to be limited at T = TQF

by a certain reason of nonthermal origin. One can estimate that

it limits the correlation length by the value of lc = 2π/κ ≈ 10

nm, which is approximately three times larger than the period

of the magnetic helix.

The (T − x) phase diagram of the magnetic structure

of Mn1−xFexGe compounds is plotted in Fig. 4. As was

found in [19], the temperature evolution of the magnetic

system of the pure MnGe compound undergoes a series of

crossovers from one state to another. From the analysis of the

scattering function we determined three different temperatures

for MnGe. The helical peak can be distinguished below

Th = 150 K. The complex mixture of the fluctuating spins,

which could not be identified as a certain type of structure,

was observed at temperatures Th < T < TSRF = 180 K. This

mixture, nevertheless, is transformed into the ferromagnetic

fluctuations [defined as the short-range ferromagnetic (SRF)

state] at TSRF with characteristic size less than 2 nm. It

should be noted that the Fe replacement in Mn1−xFexGe

does not affect this SRF state at the high-temperature region.

The spiral state below Th consists of the fraction of the

fluctuating spiral α and the fraction of the stable spiral (1 − α).

Nevertheless, the 100% fluctuating spiral state occurs in the

large area of the (T − x) phase diagram starting with the

lower border marked as a line with α = 1.0 up to the Th.

The temperature corresponding to the line α = 1.0 is defined
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FIG. 4. T − x phase diagram of the magnetic structure of

Mn1−xFexGe compounds. α represents the fraction of the fluctuating

spiral phase. The stable spiral phase (LRO) with α < 0.1 is limited

with the corresponding line in the bottom left corner of the plot. The

line α = 1.0 defines the (x − T ) value of the transition to the 100%

fluctuating spiral state. The corresponding temperature is defined as

TN . The temperature Th determines the upper border of the fluctuating

spiral phase. The temperature TSRF defines the lower border of the

short-range ferromagnetic fluctuations. The temperature TQF defines

the upper border of the quantum fluctuating state. The temperature Tc

is the only critical point found for the compounds with x � 0.5. The

vertical band at x ≈ 0.45 represents the transition from the RKKY

type to the DMI type of spirals. Lines are the guide for the eyes.

as TN . The temperature Th decreases smoothly with x, while

the temperature TN tends to zero.

The helical fluctuations at temperatures far below TN

were observed even for the pure MnGe compound [19].

The coexistence of the LRO and SRO is reflected in the

nonzero value of α. For pure MnGe α smoothly increases with

temperature and is equal to 0.1 at T ≈ 35 K. As long as the

temperature phase transition is spread over 100 K above TN ,

these fluctuations could not be related to the typical critical spin

fluctuations close to the phase transition to the paramagnetic

state. The SRO, or the helix fluctuations, in MnGe has the

clearly thermal origin only at temperatures TN < T < Th,

as the inverse correlation length κ is temperature dependent

(Fig. 3). The helical fluctuations observed at low-temperature

range for MnGe could be referred to the same type of the

SRO found for the doped compounds at low temperatures.

However, the instrumental resolution of this study does not

allow us to clearly establish this fact. Only at the temperatures

below the line corresponding to α = 0.1 the structure can

be considered as a relatively stable one. The temperature

evolution of the magnetic structure of Mn1−xFexGe with

x = 0.2 can be discussed similarly to pure MnGe compound.

The situation changes for the compounds with x > 0.2.

Their temperature evolution was described in the same terms

as for the pure MnGe, but the fraction of the stable phase

is reduced with x in the range x ∈ [0.2 ÷ 0.4] [Fig. 2(c)].

The fluctuations observed are considered as the SRO of the

quantum nature at temperatures below TQF and of the thermal

nature between TQF and Th (Fig. 4). It is interesting to note

that the temperatures TQF and TN coincide for the compounds
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with x = 0.25 and 0.30. It indicates the correlation between

two coexisting fractions. As was shown in [19], the thermal

phase transition in the MnGe compound is different from that

already known from Si-based B20 compounds. Its scenario

is far from being of the second order. It is realized via the

amplification of the fraction of the spiral fluctuations already

well below the critical temperature. These fluctuations are

gradually replacing the stable helical phase upon temperature

increase. Here we give the evidence that the change of the

Fe concentration x, being the nonthermal parameter, results

in the very similar scenario of the phase transition. Thus we

use the term “quantum” to emphasize the nonthermal nature

of changes in the magnetic structure of the Mn1−xFexGe

compounds.

In accord to [22–24] the Fe replacement of Mn atoms in

Mn1−xFexGe leads to the amplification of the DM interaction.

The experiment shows that the competition between RKKY

and DMI leads to the destruction of the fragile balance between

interactions that built the magnetic order in these compounds.

As a result the quantum phase transition from ordered helical

structure to the helical SRO is observed at xc1 ≈ 0.35. Further

increase of x leads to the change of the period of the spin

helix k for almost one order of magnitude at xc2 ≈ 0.45.

This fact demonstrates the change of the main interaction

that built the magnetic helix from the effective RKKY to

the DM.

In summary, the comprehensive small-angle neutron-

scattering study of the temperature evolution of Mn1−xFexGe

allows one to suggest for consideration the RKKY as the

fundamental interaction for helical structure in MnGe. It could

be concluded that the order-disorder phase transition at xc1 is

caused by the modification of the effective Ruderman-Kittel-

Kasuya-Yosida exchange interaction within the Heisenberg

model of magnetism with x increase. The DMI can be

considered as an instrument for destabilization of the ordered

helical structure with x or T , despite the fact that all

Mn1−xFexGe compounds crystallize in B20 type structure.

On the other hand, the RKKY interaction is symmetric while

already a small value of DMI may be able to break the chiral

symmetry of the spiral structure, showing another aspect of the

coexistence of the different fundamental interactions in these

compounds.

The results of this study can be discussed within the context

of the Hall effect measurements done for Mn1−xFexSi [10] and

MnGe [15]. The quantum phase transition in Mn1−xFexSi is

explained as a result of the sign inversion of the ordinary

Hall effect, ρN
yx = R0B, with x [10]. In case of MnGe, the

sign inversion of the topological Hall effect, ρN
yx = R0Bz

eff,

occurs as the function of temperature at T ≈ 130 K [15].

Together with the results of small-angle neutron-scattering

experiment one can predict that the line marked as α = 1.0

in Fig. 4 separates the (T − x) regions with different signs of

the product ρN
yx = R0Bz

eff at relatively small fields, H ≪ HC1.

Either R0 changes its sign with x at xc = 0.35 or Bz
eff changes

it sign with T at T = TQF. Further Hall effect experiments can

prove the validity of our hypothesis.
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