000824268 001__ 824268
000824268 005__ 20240711101540.0
000824268 0247_ $$2doi$$a10.1016/j.jpowsour.2016.10.059
000824268 0247_ $$2ISSN$$a0378-7753
000824268 0247_ $$2ISSN$$a1873-2755
000824268 0247_ $$2WOS$$aWOS:000389086900011
000824268 037__ $$aFZJ-2016-06887
000824268 082__ $$a620
000824268 1001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b0$$eCorresponding author
000824268 245__ $$aElectrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks
000824268 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000824268 3367_ $$2DRIVER$$aarticle
000824268 3367_ $$2DataCite$$aOutput Types/Journal article
000824268 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480337776_25754
000824268 3367_ $$2BibTeX$$aARTICLE
000824268 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824268 3367_ $$00$$2EndNote$$aJournal Article
000824268 520__ $$aIron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.
000824268 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000824268 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000824268 588__ $$aDataset connected to CrossRef
000824268 7001_ $$00000-0003-4155-0191$$aBerger, Cornelius M.$$b1
000824268 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2$$ufzj
000824268 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3$$ufzj
000824268 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b4
000824268 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.10.059$$gVol. 336, p. 91 - 98$$p91 - 98$$tJournal of power sources$$v336$$x0378-7753$$y2016
000824268 8564_ $$uhttps://juser.fz-juelich.de/record/824268/files/1-s2.0-S0378775316314598-main.pdf$$yRestricted
000824268 8564_ $$uhttps://juser.fz-juelich.de/record/824268/files/1-s2.0-S0378775316314598-main.gif?subformat=icon$$xicon$$yRestricted
000824268 8564_ $$uhttps://juser.fz-juelich.de/record/824268/files/1-s2.0-S0378775316314598-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824268 8564_ $$uhttps://juser.fz-juelich.de/record/824268/files/1-s2.0-S0378775316314598-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824268 8564_ $$uhttps://juser.fz-juelich.de/record/824268/files/1-s2.0-S0378775316314598-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824268 8564_ $$uhttps://juser.fz-juelich.de/record/824268/files/1-s2.0-S0378775316314598-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824268 909CO $$ooai:juser.fz-juelich.de:824268$$pVDB
000824268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b0$$kFZJ
000824268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
000824268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
000824268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b4$$kFZJ
000824268 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000824268 9141_ $$y2016
000824268 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824268 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824268 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824268 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000824268 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000824268 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824268 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824268 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824268 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000824268 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824268 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824268 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824268 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824268 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824268 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000824268 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x1
000824268 980__ $$ajournal
000824268 980__ $$aVDB
000824268 980__ $$aUNRESTRICTED
000824268 980__ $$aI:(DE-Juel1)IEK-1-20101013
000824268 980__ $$aI:(DE-Juel1)IEK-3-20101013
000824268 981__ $$aI:(DE-Juel1)ICE-2-20101013
000824268 981__ $$aI:(DE-Juel1)IMD-2-20101013
000824268 981__ $$aI:(DE-Juel1)IEK-3-20101013