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We have studied the motion of polyhedral oligomeric silsesquioxane (POSS) nanoparticles modified
with poly(ethylene glycol) (PEG) arms immersed in PEG matrices of different molecular weight.
Employing neutron spin echo spectroscopy in combination with pulsed field gradient (PFG) NMR we
found the following. (i) For entangled matrices the center of mass mean square displacement (MSD) of the
PEG-POSS particles is subdiffusive following a t0.56 power law. (ii) The diffusion coefficient as well as
the crossover to Fickian diffusion is independent of the matrix molecular weight and takes place as soon as
the center of mass has moved a distance corresponding to the particle radius—this holds also for
unentangled hosts. (iii) For the entangled matrices Rubinstein’s scaling theory is validated; however, the
numbers indicate that beyond Rouse friction the entanglement constraints appear to strongly increase the
effective friction even on the nanoparticle length scale imposing a caveat on the interpretation of
microrheological experiments. (iv) The oligomer decorated PEG-POSS particles exhibit the dynamics of a
Gaussian star with an internal viscosity that rises with an increase of the host molecular weight.
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The scale-dependent viscoelastic properties of soft mat-
ter systems—in particular polymer melts and concentrated
solutions—are reflected in the motion of small particles
embedded in such systems [1]. This has been used in
microrheology as a means of probing the local dynamics of
complex fluids [2–4]. Already Brochard and de Gennes [5]
pointed out that the scale-dependent viscosity in a polymer
melt will severely influence the transport properties of
small colloidal particles. The Stokes-Einstein relation loses
its validity and instead a local, scale-dependent viscosity of
the complex fluid comes into play.
In this context for polymer melts the reptation tube size is

the crucial spacial scale discriminating the dynamics of
nanoparticles with sizes smaller or larger than the tube
diameter dtube. Based on this scale-dependent polymer
dynamics, Rubinstein et al. [6] developed a scaling theory
for the diffusion of nonsticky nanoparticles (NP) in a
polymer matrix with precise predictions for the different
size-dependent motional regimes of the NP. In particular,
for NP smaller than dtube, a subdiffusive behavior with a
mean square center of mass (c.m.) displacement (MSD)
hr2c:m:ðtÞi ∝ t1=2 was predicted which crosses over to
Fickian diffusion when the NP have moved distances
corresponding to their size. NP larger than dtube are heavily
restricted in their motion. Experimentally nanoparticle
motion on nanoscopic scales became accessible via
x-ray photon correlation spectroscopy (XPCS) [7–10].
Nanoparticle motions in glassy polymer materials, melts,
and solutions were investigated. Hyperdiffusive properties
were found that were related to strain-induced motion in
glasses or to hopping between cages formed by the

entangled polymer chains in the melt [7]. Recently, con-
centrated polystyrene solutions, where nanoparticles of a
“size” R always larger than the solution mesh size and in
the order of the solution tube diameter were studied [8].
For all conditions, subdiffusive motion with hr2c:m:i ∝ tα

with α≃ 0.5 was found even though the maximum MSD
significantly exceeded the particle diameter.
In this Letter we present a neutron spin-echo (NSE)

study of the translational diffusion and the internal
dynamics of PEG-POSS (POSS=polyhederal oligomeric
silsesquioxane) nanoparticles that were grafted with poly
(ethylene glycol) (PEG) oligomers immersed in PEG
polymer matrices of different molecular weight.
The PEG-POSS particles were purchased from Hybrid

Plastics, USA, and purified by triple fractionation. The final
product was chemically analyzed leading to an average
functionality fPOSS ¼ 7.5 and a polymerization degree of
narm ¼ 11.7, terminated with CH3 end groups. As matrix
polymers, deuterated PEG chains of three different molecu-
lar weights were synthesized using standard anionic ring
opening polymerization techniques with potassium tert-
butoxide as initiator. The polymers were characterized by
1H-NMR to determine the molecular weights and by size
exclusion chromatography with PEG calibration to deter-
mine the polydispersities. The polydispersity indices were
Mw=Mn ¼ 1.02 and the matrix Mw values were 1.7 (1.5),
21.6 (20), and 83.1 kg=mol (80 K), respectively.
All mixtures of the linear PEG chains with the PEG-POSS

particles were dissolved in tert-butanol and subsequently
freeze dried at T ¼ −5 °C to ensure good dispersion.
PEG-POSS in PEG are to be considered “nonsticky,”
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athermal nanoparticles without enthalpic interaction.
All three samples investigated had a nanoparticle volume
fraction ϕPEG−POSS ¼ 0.05 (0.01 for SANS).
The PEG-POSS structure in the linear matrices was

characterized by small-angle neutron scattering (SANS)
experiments that were performed on the KWS-1 diffrac-
tometer at MLZ in Garching, Germany [11]. Neutron spin
echo experiments were performed at the IN15 instrument
at ILL Grenoble, France [12]. At a temperature of 400 K a
time range from 0.1 to 250 ns was covered. Using the same
samples, also pulsed field gradient (PFG) NMR experi-
ments using a Bruker Minispec Analyzer mq20 were
performed at T ¼ 400 K to measure the translational
PEG-POSS diffusion coefficient on a micrometer scale.
Figure 1 displays background corrected SANS results

from PEG-POSS particles at 1% solution in the 20 and 80 K
deuterated matrices. As may be seen, the PEG-POSS form
factors for both matrices are identical. The form factors were
fitted using an RPA model including a micellar-like model
by Pedersen et al. [13,14] for the PEG-POSS. The only
fitting parameter was the statistical segment length lNPst that
came out to lNPst ≃ 5.8� 0.1 Å, a value close to what would
be expected for PEG chains (lmatrix

st ¼ 5.9 Å [15]) in the
melt. From a Guinier analysis the radius of gyration was
determined to Rg ¼ 16.3� 0.6 Å leading to an effective
PEG-POSS particle radius of 20.5 Å.
Figure 2 presents NSE spectra from the three samples

(a) 1.5, (b) 20, and (c) 80 K for from above Q ¼ 0.07, 0.09,
0.14 and 0.19 Å−1 with Q ¼ 4π=λ sinðθ=2Þ, where λ is the
neutron wavelength and θ the scattering angle. At the lowest
Q values, the data only contain translational diffusion
contributions. In Gaussian approximation we have

SðQ; tÞ=SðQÞ ¼ e−ðQ2=6Þhr2c:m:ðtÞi; ð1Þ
where hr2c:m:ðtÞi is the time-dependent mean square center
of mass displacement of the PEG-POSS nanoparticles.

Equation (1) allows the direct determination of hr2c:m:ðtÞi
by inversion [16].
Figure 3 presents the obtained hr2c:m:ðtÞi for the three

matrices. The lower points result from the PEG-POSS
diffusion within the entangled 20 and 80 K matrices.

FIG. 1. SANS intensity of the PEG-POSS nanoparticles in PEG
melts (ϕPEG−POSS ¼ 0.01). The line is a fit to a micellar form
factor (see text). The inset shows the chemical structure of the
POSS core.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [ns]

S
(Q

,t
)/

S
(Q

,0
)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [ns]

S
(Q

,t
)/

S
(Q

,0
)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [ns]

S
(Q

,t
)/

S
(Q

,0
)

(a)

(b)

(c)

FIG. 2. Neutron spin-echo data from PEG-POSS nanoparticles
in melts of d-PEG (a, 1.5; b, 20; c, 80 K). For 4 values of the
scattering wave vector Q ¼ 0.07, 0.09, 0.14 and 0.19 Å−1. The
dashed lines show the contribution of NP center of mass
diffusion. The solid lines include also the internal dynamics of
the PEG arms attached to the POSS particles (see text).
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At times below 150 ns, the MSD is subdiffusive following a
power law ∝ t0.56. At τcross ¼ 150 ns the data indicate a
crossover towards Fickian diffusion, where the MSD
follows a linear time dependence. On the same samples
also PFG-NMR diffusion results were obtained. The
extrapolations into the nanoseconds regime are shown
by the dashed lines. They agree well with the long time
Fickian diffusion from the NSE data and further confirm
the observed crossover.
The upper data points relate to the PEG-POSS motion

within the nonentangled 1.5 K matrix. Again we see
subdiffusive motion at short times, now following a power
with an exponent α ¼ 0.77. For this sample the crossover
takes place at τcross ¼ 40 ns, well in the center of the NSE
time window. The dashed line again gives the extrapolation
of the NMR results to the nanosecond scale. We note that
(i) for the entangled matrices the PEG-POSS MSDs are
independent of molecular weight (ii) for the nonentangled
matrix, the diffusion is significantly faster; however, the
crossover to Fickian diffusion takes place at exactly the same
hr2c:m:i ¼ 420 Å2 as in the higher Mw matrices—the cross-
over hr2c:m:i is indicated by the horizontal dashed line.
This value virtually matches the effective radius of the
particle R ¼ Rg

ffiffiffiffiffiffiffiffi

5=3
p

.
In Table I we display the quantitative results for the

diffusion properties within the three matrices. Thereby
DsubðtÞ results from the equation hr2c:m:ðtÞi ¼ 6DsubðtÞt.
Finally, we connect the two MSD regimes by a simple
crossover function hr2c:m:ðtÞi ¼ f½6DsubðtÞt�a þ ½6Dt�ag1=a
with a ¼ 10. Then by Eq. (1) we describe the diffusion
contribution to the NSE spectra shown in Fig. 2 as dashed
lines. As is evident, the two lowest Q values are well

described solely by diffusion. At higher Q the decay of
SðQ; tÞ=SðQÞ is more pronounced than what diffusion
would predict.
Thus, some extra dynamics become visible. First, we

consider the diffusive motion of the PEG-POSS (effective
diameter 2R≃ 41 Å) smaller than the tube diameter
dtube ¼ 52.5 Å of the polymer melt. According to
Ref. [5], as well as to Refs. [6,17], the short-time Rouse
motion within the melt is expected to be responsible for the
particle dynamics. Since from various experiments [18–20]
we know all microscopic parameters of the PEG melt, we
may compare the experimental data quantitatively with
Rubinstein’s scaling predictions. Thereby we complement
the scaling approach by the proper prefactors.
The basic mechanism is as follows. (i) At very short

times, the NP will diffuse with the Stokes-Einstein dif-
fusion coefficient corresponding to the monomeric PEG
viscosity. (ii) As soon as the nanoparticle is covering a
distance larger than a monomer or segmental size, increas-
ingly larger chain sections will start to create friction.
This results in a scale dependent viscosity, giving rise to a
diffusion coefficient desreasing with time. (iii) This process
saturates when the particle has covered a distance corre-
sponding to its size. Then all Rouse modes corresponding
to chain sections up to the particle size are involved and
from there on the translational particle diffusion coefficient
is expected to be of Fickian nature.
Let us now consider numbers. The Rouse monomeric

viscosity is given by

ηmon ¼
NAρ

36M0

ζ0l2st ¼ 0.54 mPa s ð2Þ

with NA the Avogadro number, ρ ¼ 1040 kg=m3 the
polymer density [21], ζ0 ¼ 0.40 × 10−11 kg=s the mono-
meric friction coefficient [15,17], and, finally, lst ¼ 5.9 Å
the matrix PEO segment length. With that we may
define a short-time nanoparticle diffusion coefficient
D0 ¼ kBT=ð6πηmonRÞ ¼ 25.2 Å2=ns. This local diffusion
coefficient will be valid until the MSD has reached the size
of a monomer. Thus, we may define a basic time
6τ0D0 ¼ l2st → τ0 ¼ 0.23 ns. As soon as the MSD rises
beyond this value, the viscosity in the Stokes-Einstein
expression has to be replaced by an effective viscosity
taking into account the increasing number of segments
contributing to ηeff ¼ ηmon

ffiffiffiffiffiffiffiffi

t=τ0
p

, [6], which for our
parameters leads to an effective diffusion coefficient
DeffðtÞ ¼ kBT=½6πηeffðtÞR� ¼ 3.68× 10−15 ½m2=s1=2�t−1=2.
Deff will continue to decrease until a MSD of the particle
size R2 ¼ 6DeffðτcrossÞτcross is reached, thereby defining the
crossover time from which the subdiffusive behavior will
change into Fickian diffusion. With the present values we
arrive at τcross ¼ 40 ns. The Fickian diffusion coefficient is
predicted as

DF ¼ kBTl2st
6πηmonR3
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FIG. 3. MSD of the POSS particle center of mass diffusion
computed from the Q ¼ 0.07 Å−1 NSE data by inversion of
Eq. (1), open circles: 1.5 K, triangles and dots: 20 and 80 K
d-PEG matrix. The dashed lines indicate the MSD extrapolated
from NMR results. The dash-dotted line indicates the MSD value
which separates the validity regimes of sublinear diffusion (red
lines) from that of normal Fickian diffusion (black lines).
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Inserting our parameters we get DF ¼ 2 Å2=ns. The way
our approach is constructed at τcross the center of mass MSD
amounts to R2.
We now compare the predicted quantities with the

experimental results from Table I. Obviously, for the
1.5 K matrix the experimental values and the predictions
are very close. The crossover is found at about 40 ns
identical to the calculated 40 ns. The Fickian diffusion
coefficients of 1.77 (NSE) or 2.02 Å2=ns (NMR) are again
very similar to the calculated 2 Å2=ns. However, the scaling
exponent in the subdiffusive regime is α ¼ 0.77, signifi-
cantly larger than the predicted value of 0.5. Nevertheless,
we get a nearly quantitative agreement of the measured
diffusion properties for the short chain matrix, which by
itself definitely follows the Rouse dynamics.
Even though qualitatively the scaling theory depicts also

all features of the entangled matrices, the quantitative
comparison is not favorable. First we note the excellent
qualitative agreement with theory: (i) we find subdiffusivity
with an exponent of α≃ 0.56 rather close to the predicted
0.5, (ii) the mean square displacement of the nanoparticle
is independent of the matrix molecular weight in the
entangled matrix, and (iii) the crossover to Fickian
diffusion takes place at hr2c:m:i ¼ R2.
However, beyond the topological constraints expressed

by the tube the entangled matrix seems to impose further
resistance showing itself in an increase of the effective
nanoparticle friction. Taking the ratio of the diffusion
coefficients in the 20 or 80 K matrix with that in the
1.5 K matrix (Table I) we find an increase of the apparent
friction by a factor of 4, while from the Mw dependence of
the glass transition temperature at most a 10% effect is
expected [18]. Thus, the microrheological viscosity on a
scale inside the tube is not only determined by the Rouse
friction but includes further resistance most likely relating
to the topological constraints imposed by the other chains.
This finding, which might be representative also for hairy
nanoparticles in general, will affect the interpretation of
microrheological experiments and calls for caution in
identifying particle friction with Rouse friction.
From Fig. 2 it is obvious that beyond translational

diffusion some additional dynamics contribute to the
dynamic structure factor. These dynamics must be related
to the motions of the PEG arms associated with the POSS
nucleus. Because SðQ; tÞ=SðQÞ consists of a term for
describing the overall center of mass diffusion multiplied

with a structure factor SðQ; tÞint describing any additional
internal dynamics, the latter is simply given by the division
of the measured structure factor by the diffusive part
[Eq. (1)]. Figure 4 displays the result for SðQ; tÞint=SðQÞ,
describing the additional dynamics of the PEG-POSS
particle in the 80 K melt. We found that a model for the
Rouse dynamics of a polymer star [22,23] fits the data very
well. Further details are given in the Supplemental Material
[24]. The perfect agreement with the data confirms that the
Rouse model for a Gaussian star polymer well describes the
internal dynamics of the PEG-POSS particle. The only fitted
parameter, the Rouse friction coefficient, describes the decay
of the structure factor at short times. The plateau observed at
longer times is solely determined by the final extension of
the star taken from the SANS results. As Fig. 4 shows, the
dynamic structure factor for the Gaussian star describes both
features, the initial decay as well as the plateauing quite well.
Analogously also the data for the 1.5 and 20 Kmatrices were
treated. The final result, including the diffusion part, is
presented by the solid lines in Figs. 2(a) and 2(b). In Table I,
we present the obtained monomeric friction coefficients
within the PEG-POSS shell. We note a significant increase
of the friction coefficient with the increase of the host
molecular weight. Thus, the matrix molecular weight affects
the local viscosity of the grafted chains. The increasing
friction also raises the shell viscosity [Eq. (2)]. This result
has broad implications for understanding the effect of grafted

TABLE I. NMR diffusometry and NSE diffusion constants and segmental friction of the PEG arms of the
PEG-POSS NP.

Sample DNMR½Å2=ns� DNSE½Å2=ns� DsubðtÞ½Å2=ns� ζ0;POSS½10−11 kg=s�
1.5 K 2.02� 0.04 1.77� 0.04 3.97 × ðt=nsÞ−0.23 0.61� 0.03
20 K 0.39� 0.05 0.45� 0.02 3.82 × ðt=nsÞ−0.43 0.91� 0.04
80 K 0.46� 0.03 0.46� 0.02 4.26 × ðt=nsÞ−0.46 1.49� 0.10
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FIG. 4. NSE data from PEG-POSS in 80 K d-PEG divided by
the center of mass factor in SðQ; tÞ. The lines correspond to the
dynamic contribution of the star shaped arms of the PEG-POSS.
The Q values are the same as in Fig. 2.
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chains on their surroundings and the effect of the surround-
ings on the grafted chains. One immediate application relates
to a matter of great technological importance, the reinforce-
ment in polymer nanocomposites containing particles with
grafted chains [27,28].
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