001     824309
005     20240711113922.0
024 7 _ |a 10.1016/j.nme.2016.04.010
|2 doi
024 7 _ |a 2128/13372
|2 Handle
024 7 _ |a WOS:000391191500071
|2 WOS
037 _ _ |a FZJ-2016-06919
082 _ _ |a 333.7
100 1 _ |a Jasper, B.
|0 P:(DE-Juel1)158038
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Behavior of Tungsten Fiber-Reinforced Tungsten Based on Single Fiber Push-Out Study
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483181401_3892
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To overcome the intrinsic brittleness of tungsten (W), a tungsten fiber-reinforced tungsten-composite material (Wf/W) is under development. The composite addresses the brittleness of W by extrinsic toughening through the introduction of energy dissipation mechanisms. These mechanisms allow the reduction of stress peaks and thus improve the materials resistance against crack growth. They do not rely on the intrinsinc material properties such as ductility. By utilizing powder metallurgy (PM) one could benefit from available industrialized approaches for composite production and alloying routes. In this contribution the PM method of hot isostatic pressing (HIP) is used to produce Wf/W samples containing W fibers coated with an Er2O3 interface. Analysis of the matrix material demonstrates a dense tungsten bulk, a deformed fiber and a deformed, but still intact interface layer. Metallographic analysis reveals indentations of powder particles in the interface, forming a complex 3D structure. Special emphasis is placed on push-out tests of single fiber HIP samples, where a load is applied via a small indenter on the fiber, to test the debonding and frictional properties of the Er2O3 interface region enabling the energy dissipation mechanisms. Together with the obtained experimental results, an axisymmetric finite element model is discussed and compared to existing work. In the HIP Wf/W composites the matrix adhesion is rather large and can dominate the push-out behavior. This is in contrast to the previously tested CVD produced samples.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schoenen, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Du, J.
|0 P:(DE-Juel1)144673
|b 2
700 1 _ |a Hoeschen, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Koch, F.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 5
700 1 _ |a Neu, R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Riesch, J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Terra, A.
|0 P:(DE-Juel1)130166
|b 8
|u fzj
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 9
773 _ _ |a 10.1016/j.nme.2016.04.010
|g p. S2352179115300727
|0 PERI:(DE-600)2808888-8
|p 416–421
|t Nuclear materials and energy
|v 9
|y 2016
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/824309/files/1-s2.0-S2352179115300727-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824309/files/1-s2.0-S2352179115300727-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824309/files/1-s2.0-S2352179115300727-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824309/files/1-s2.0-S2352179115300727-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824309/files/1-s2.0-S2352179115300727-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/824309/files/1-s2.0-S2352179115300727-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:824309
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158038
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144673
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)2594
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21