000824318 001__ 824318
000824318 005__ 20250129094252.0
000824318 0247_ $$2Handle$$a2128/14554
000824318 0247_ $$2ISSN$$a1866-1807
000824318 020__ $$a978-3-95806-233-7
000824318 037__ $$aFZJ-2016-06927
000824318 041__ $$aEnglish
000824318 1001_ $$0P:(DE-Juel1)157866$$aWilbs, Genevieve$$b0$$eCorresponding author$$gfemale$$ufzj
000824318 245__ $$aMagnetic Proximity Effects in Nanoparticle Composite Systems and Macrocrystals$$f- 2016-11-29
000824318 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000824318 300__ $$aIII, 230 S.
000824318 3367_ $$2DataCite$$aOutput Types/Dissertation
000824318 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000824318 3367_ $$2ORCID$$aDISSERTATION
000824318 3367_ $$2BibTeX$$aPHDTHESIS
000824318 3367_ $$02$$2EndNote$$aThesis
000824318 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1496127522_8257
000824318 3367_ $$2DRIVER$$adoctoralThesis
000824318 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v142
000824318 502__ $$aRWTH Aachen, Diss., 2017$$bDr.$$cRWTH Aachen$$d2017
000824318 520__ $$aAssemblies of magnetic nanoparticles are of major interest for future applications e.g. in spintronic devices, high density data storage systems or biomedical applications. The reason is not only the obvious miniaturization, but also their novel properties emerging only at the nanoscale. Hence, arranging nanoparticles like atoms in a crystal enables the fabrication of a new class ofmaterials. To gain in-depth understanding of these systems, it is necessary to investigate them on all length scales. The present work provides a novel and extensive contribution to the understanding of the self assembly of iron oxide nanoparticle superstructures and their influence on polarizable matrix materials. Through the investigation of the samples at all stages of preparation, a comprehensive picture of the unique phenomena observed at the end is derived. For this purpose, oleic acid coated iron oxide nanoparticles were deposited on silicon substrates by spincoating to manufacture two-dimensional arrangements. Hereby, the influence of several parameters has been investigated and optimized. Afterwards, the organic surfactant shell was removed by oxygen plasma treatment. This process has been studied in detail, because it initiates a phase transformation that significantly influences the magnetic properties of the system (e.g. by reducing the blocking temperature). Thin palladium or platinum films were then respectively deposited to create a matrix material. Aside from magnetometry measurements, first order reversal curves were obtained in cooperation with the Max-Planck-Institute for Intelligent Systems, both revealing that the matrix materials significantly influence the inter-particle interaction and vice versa. However, only by performing x-ray magnetic circular dichroism experiments at the Advanced Photon Source of the Argonne National Laboratory, it could be evidenced unambiguously thatplatinum can be polarized by an oxide. Additionally, these systems were investigated concerning their electrical transport properties, whereby several nanoparticle phenomena could be observed. Another highlight of this work is the successful preparation of three-dimensional iron oxide nanoparticle assemblies on length scales of > 1000 m by carefully adjusting the parameters of a newly developed centrifuge assisted sedimentation method. Extensive SEM studies combined with magnetometry and sophisticated SAXS experiments resulted in a comprehensive overview on the morphology and magnetism of these so-called ’macrocrystals’, as well as on the nanoparticle arrangement inside them. Like this, highly correlated systems with a macroscopic expansion could be manufactured. Finally, a nanoparticle/palladium multilayer was prepared. It demonstrates that the polarization and magnetoresistance effects found in the two-dimensional systems can only partially be transfered to three dimensional assemblies. In conclusion, this work shows how two- and three-dimensional nanoparticle assemblies can be prepared, how their properties are modified at different stages of preparation and how a polarizable matrixmaterial influences the particles and vice versa.
000824318 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000824318 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000824318 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000824318 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000824318 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000824318 650_7 $$xDiss.
000824318 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000824318 8564_ $$uhttps://juser.fz-juelich.de/record/824318/files/Schluesseltech_142.pdf$$yOpenAccess
000824318 8564_ $$uhttps://juser.fz-juelich.de/record/824318/files/Schluesseltech_142.gif?subformat=icon$$xicon$$yOpenAccess
000824318 8564_ $$uhttps://juser.fz-juelich.de/record/824318/files/Schluesseltech_142.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824318 8564_ $$uhttps://juser.fz-juelich.de/record/824318/files/Schluesseltech_142.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824318 8564_ $$uhttps://juser.fz-juelich.de/record/824318/files/Schluesseltech_142.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824318 8564_ $$uhttps://juser.fz-juelich.de/record/824318/files/Schluesseltech_142.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824318 909CO $$ooai:juser.fz-juelich.de:824318$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000824318 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824318 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000824318 9141_ $$y2016
000824318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157866$$aForschungszentrum Jülich$$b0$$kFZJ
000824318 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000824318 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000824318 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000824318 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000824318 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000824318 920__ $$lyes
000824318 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000824318 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000824318 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000824318 9801_ $$aFullTexts
000824318 980__ $$aphd
000824318 980__ $$aVDB
000824318 980__ $$aUNRESTRICTED
000824318 980__ $$abook
000824318 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000824318 980__ $$aI:(DE-Juel1)PGI-4-20110106
000824318 980__ $$aI:(DE-82)080009_20140620
000824318 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000824318 981__ $$aI:(DE-Juel1)PGI-4-20110106