000824320 001__ 824320
000824320 005__ 20240625095028.0
000824320 0247_ $$2doi$$a10.1140/epjqt/s40507-016-0042-8
000824320 0247_ $$2arXiv$$aarXiv:1510.03064
000824320 0247_ $$2Handle$$a2128/13044
000824320 0247_ $$2WOS$$aWOS:000407193400001
000824320 0247_ $$2altmetric$$aaltmetric:4616006
000824320 037__ $$aFZJ-2016-06929
000824320 082__ $$a530
000824320 1001_ $$0P:(DE-HGF)0$$aWosnitzka, Martin$$b0
000824320 245__ $$aMethodology for bus layout for topological quantum error correcting codes
000824320 260__ $$aBerlin$$bSpringer Open$$c2016
000824320 3367_ $$2DRIVER$$aarticle
000824320 3367_ $$2DataCite$$aOutput Types/Journal article
000824320 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480421436_20529
000824320 3367_ $$2BibTeX$$aARTICLE
000824320 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824320 3367_ $$00$$2EndNote$$aJournal Article
000824320 500__ $$a11 pages, 12 figures
000824320 520__ $$aMost quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code.
000824320 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000824320 588__ $$aDataset connected to arXivarXiv, CrossRef
000824320 7001_ $$0P:(DE-HGF)0$$aPedrocchi, Fabio L$$b1$$eCorresponding author
000824320 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b2
000824320 773__ $$0PERI:(DE-600)2784501-1$$a10.1140/epjqt/s40507-016-0042-8$$gVol. 3, no. 1, p. 4$$n1$$p4$$tEPJ Quantum Technology$$v3$$x2196-0763$$y2016
000824320 8564_ $$uhttps://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.pdf$$yOpenAccess
000824320 8564_ $$uhttps://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.gif?subformat=icon$$xicon$$yOpenAccess
000824320 8564_ $$uhttps://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824320 8564_ $$uhttps://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824320 8564_ $$uhttps://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824320 8564_ $$uhttps://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824320 909CO $$ooai:juser.fz-juelich.de:824320$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000824320 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b2$$kFZJ
000824320 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000824320 9141_ $$y2016
000824320 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824320 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000824320 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000824320 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000824320 920__ $$lyes
000824320 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000824320 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1
000824320 980__ $$ajournal
000824320 980__ $$aVDB
000824320 980__ $$aUNRESTRICTED
000824320 980__ $$aI:(DE-Juel1)PGI-2-20110106
000824320 980__ $$aI:(DE-Juel1)IAS-3-20090406
000824320 9801_ $$aFullTexts
000824320 981__ $$aI:(DE-Juel1)IAS-3-20090406