001     824320
005     20240625095028.0
024 7 _ |a 10.1140/epjqt/s40507-016-0042-8
|2 doi
024 7 _ |a arXiv:1510.03064
|2 arXiv
024 7 _ |a 2128/13044
|2 Handle
024 7 _ |a WOS:000407193400001
|2 WOS
024 7 _ |a altmetric:4616006
|2 altmetric
037 _ _ |a FZJ-2016-06929
082 _ _ |a 530
100 1 _ |a Wosnitzka, Martin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Methodology for bus layout for topological quantum error correcting codes
260 _ _ |a Berlin
|c 2016
|b Springer Open
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480421436_20529
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 11 pages, 12 figures
520 _ _ |a Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to arXivarXiv, CrossRef
700 1 _ |a Pedrocchi, Fabio L
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 2
773 _ _ |a 10.1140/epjqt/s40507-016-0042-8
|g Vol. 3, no. 1, p. 4
|0 PERI:(DE-600)2784501-1
|n 1
|p 4
|t EPJ Quantum Technology
|v 3
|y 2016
|x 2196-0763
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/824320/files/art_10.1140_epjqt_s40507-016-0042-8.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:824320
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21