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Abstract
Most quantum computing architectures can be realized as two-dimensional lattices
of qubits that interact with each other. We take transmon qubits and transmission line
resonators as promising candidates for qubits and couplers; we use them as basic
building elements of a quantum code. We then propose a simple framework to
determine the optimal experimental layout to realize quantum codes. We show that
this engineering optimization problem can be reduced to the solution of standard
binary linear programs. While solving such programs is a NP-hard problem, we
propose a way to find scalable optimal architectures that require solving the linear
program for a restricted number of qubits and couplers. We apply our methods to
two celebrated quantum codes, namely the surface code and the Fibonacci code.
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1 Introduction
Since the theoretical demonstration of fault-tolerant quantum information processing, a
holy grail of modern physics has been to realize fault-tolerant quantum computing archi-
tectures in the lab. While this still remains a very challenging task, many experimental
advances have been achieved. Arguably, one can hope to see the first small-size imple-
mentations in a near future.

Among the most promising quantum computing platforms, one finds so called topo-
logical quantum codes []. The main idea is to encode quantum information (in the form
of logical qubits) using a large number of physical qubits. The additional degrees of free-
dom introduced in the Hilbert space then allow the extraction of some information about
the errors induced by the environment (the error syndrome) and to correct them with-
out collapsing the stored logical qubit. Furthermore, topological codes are, by definition,
immune to local and static perturbations [].

Most of the topological quantum codes are realizable as a lattice of qubits (some of them
might require qudits instead) that are coupled to each other. Depending on the specifics of
the quantum code, one qubit might be coupled to several other qubits in its neighborood.
In this work, we present a general framework to determine the optimal architecture to
couple the qubits of a quantum code. Here we assume that couplers can be introduced be-
tween qubits and we identify the coupling architecture that minimizes the total length of
the couplers, rendering the physical implementation more practical. Our analysis is valid
for any quantum code and we show that this set of optimization problems are identical to
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well-known binary linear programs. We would like to point out that our choice of metric
defining what we call an optimal scheme might turn out not to be the one that experimen-
talists will eventually consider relevant. Experimental and theoretical works with several
qubits per transmission lines have just started, [–] and the results obtained from experi-
ments will be crucial to determine which optimality criteria should be satisfied in practice.
In this context, our work builds a methodology where a huge number of layouts can be
studied and from which an optimal layout can be determined; this methodolody applies to
a variety of metrics and not only to the precise choice we have made here. We thus believe
that it represents a useful tool.

We apply our formalism to two celebrated quantum codes, namely the surface code [,
] and the Fibonacci Levin-Wen code [, ]. The former one is a planar version of Kitaev’s
toric code [] that is among the most promising quantum computing platforms because
of its simplicity and its surprisingly high error threshold of about %. The latter code is
more involved but supports Fibonacci anyons that are universal for topological quantum
computation; in other terms every quantum gate can be approximated to any accuracy by
braiding Fibonacci anyons. Since the Fibonacci model is universal, it can hardly be simu-
lated on a classical computer. In order to determine the error threshold of the Fibonacci
Levin-Wen model, one would probably need to perform a full quantum simulation and
thus have a quantum computer at hand. However, what precise algorithm should be run
on the hypothetical quantum computer is still open and is a very interesting problem. Re-
cently, some specific limiting cases where the Fibonacci model can be simulated classically
have been investigated where the error threshold is approximatively . % [].

We think that our work on the surface code is particularly timely since the first set of
experiments to build small fragments of surface code (with  data qubits) have now started
[]. It is thus interesting to understand what architecture is optimal and could be realized
in the lab. Finally we compare our results for the surface code with previously suggested
architectures [, ].

The paper is organized as follows. In Section . we present the physical model under
consideration for a generic quantum code as well as the formalization of the optimization
problem. In particular, we show that the optimal architecture is found by solving binary
linear programs. In Section . we apply the formalism developed in Section . in order to
find an optimal architecture for the Fibonacci code. In particular, we present a methodol-
ogy to find scalable architectures by solving tractable binary linear programs. Section .
finally contains our results for the surface code.

2 Connecting qubits optimally
In this work, we consider Transmon Qubits (TQs) and Transmission Line Resonators
(TLRs) as the prototypical examples of physical qubits and moderate distance couplers
[, ]. However, it is worth pointing out that our approach does not depend on the tech-
nological details of the implementation but can be applied to any kinds of qubits and cou-
plers [–].

2.1 Model
Consider a set of N TQs q, . . . , qN that lie on a two-dimensional plane at positions
x, . . . , xN . Depending on the specific quantum codes that one wants to realize, see Sec-
tions  for examples, several TQs must interact with each other and thus be coupled
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Figure 1 Two-dimensional lattice of qubits
(black dots). The dashed lines between qubits
represent two-qubit couplings. The solid lines going
through the qubits are TLRs. The squares at the end
of the solid lines specify the starting and the ending
points of the corresponding TLRs. (a) Set P of
two-qubit couplings required in a given quantum
circuit. (b) TLR scheme that realizes every two-qubit
coupling of (a). The two TLRs each contain more
than two TQs.

through TLRs. As any quantum circuit can be reduced to a succession of single- and two-
qubit operations [], the most straightforward approach is to introduce TLRs containing
each exactly two TQs; in this way TLRs realize the set P of all two-qubit couplings neces-
sary to implement a given quantum circuit, see Figure .

However, using a new TLR for each pair of qubits that should be coupled to participate
in two-qubit gate operations might not be the most optimal approach to this engineering
problem. In fact TLRs are able to couple to more than two TQs and we assume that m
individual TQs can reside inside the resonant cavity provided by the TLR. Each of the
TQs can be controlled separately and coupled to any of the other m –  TQs through the
TLR. Following recent experimental progress [], we find that m ≤  is a realistic upper
bound. Informative micrographs of TLRs hosting several TQs can be found in [] and
on page  of [] or in Figure (a) of []. Also, it seems natural to restrict the number
p of TLRs that are connected to a single TQ; here we choose p =  []. We would like to
mention here that X-mon qubits, a type of transmon qubit, are specifically designed so
that they can couple to several TLRs, see Figure  in [] for example where each branch
of the X-mon can be coupled to a different TLR.

We call an unordered sequence of sites ik ∈ {, . . . , N} a string S = {i, i, . . . , im}. The
length |S| of a string is defined by the number of sites it contains. To each string S , we as-
sociate a number κS = , ; if κS = , then a TLR is present and hosts the m TQs qi , . . . , qim ,
otherwise no single TLR hosts all those specific m qubits. We denote by Sm the set of all
strings S with |S| ≤ m. We call the vector

Wm = (κ{,}, . . . ,κ{N–,N};κ{,,}, . . . ;κ{,,...,m}, . . .)T ()

a TLR scheme. We say that a TLR corresponding to a string S is included in a TLR scheme
Wm if κS is one of the elements of the vector Wm. We say that a TLR scheme Wm contains
a TLR associated with string S if it is included and κS = .

In order to formalize the concept of optimal TLR scheme, we introduce a cost CS ∈ R

associated with each string S ∈Sm. The cost vector of the scheme Wm is then

C(Wm) = (C{,}, . . . ,C{N–,N},C{,,}, . . . ,C{,,...,m}, . . .)T . ()
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Using this notation, the total cost of a given TLR scheme Wm is C(Wm)T · Wm. The goal of
this work is to determine one TLR scheme Wm that minimizes the cost and realizes the set
P of two-qubit couplings. In Sections  we present concrete examples of cost functions
for the surface code and for the Levin-Wen model.

The problem of finding the TLR scheme Wm that has minimal cost is solved by using
standard binary linear optimization methods. The problem is formalized as follows: Given
a set of two-qubit connections P , and given two integers m and p, find the TLR scheme Wm

that minimizes the cost C(Wm)T · Wm such that
. For all ij ∈ {, , . . . , N},

∑

S∈Sm|ij∈S
κS ≤ p. ()

. Wm realizes every two-qubit coupling of P .
It is worth pointing out again that the maximal number m of qubits per TLR, as well as

the maximal number p of TLR per qubit, is fixed.
It is now clear why we call this a binary linear program; every component of the vector

Wm is either  or . Solving such a binary linear program is generally very difficult and is in
fact an NP-hard problem. However, specific instances of such problems can be tractable,
and we give explicit examples below. As a side remark, note that when all the numbers in
the program are allowed to be real, then the situation is dramatically simplified and the
optimization problem can be solved in polynomial time.

In this work, we use the free software lpsolve, available at http://lpsolve.sourceforge.net/
./, to find the optimal solution to the binary linear program defined above. In order to
simplify the program, we leave out all the superfluous TLRs. We call a TLR superfluous if
it can be replaced by two (or more) TLRs that host no common qubits such that the same
set of required two-qubit couplings is realized; one can thus always replace a superfluous
TLR by two TLRs that will have a lower overall cost.

As mentioned in the Introduction, we aim to find the optimal architectures for two
important quantum error correcting codes, namely the surface code and the Levin-Wen
model. We find interesting that such quantum technological problems can be turned into
standard optimization problems.

3 Application to Quantum error correcting codes
3.1 Fibonacci Levin-Wen model
Levin-Wen models are a class of spin systems defined on trivalent lattices whose excita-
tions realize any consistent (Abelian or non-Abelian) anyonic theory []. Here we focus
on a particular Levin-Wen model, namely the Fibonacci Levin-Wen model [, ]. Its name
takes its origin in the nature of the excitations above the ground states; indeed they are
Fibonacci anyons with topological charge τ and fusion rules

τ × τ =  + τ . ()

Here  represents the vacuum topological charge.

http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
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Figure 2 The Fibonacci Levin-Wen model is
defined on a trivalent lattice. Each edge hosts a
spin-1/2 particle (a so-called data qubit) depicted
here by a black dot. (a) Vertex v where three edges
of the lattice meet. The state of the three qubits at
the vertex v is |ijk〉. (b) Twelve data qubits (black
dots) needed to define the plaquette operator Bp
on the trivalent lattice. In order to perform
non-demolition measurements of vertex and
plaquette operators, one introduces ancillary qubits
(green squares). Here α0 is used to measure Bp ,
while the remaining ancillary qubits α1–6 are used
to measure the six vertex operators. This number of
additional qubits is appropriate for the plaquette
reduction method of Ref. [9].

Considering a trivalent lattice with each edge carrying a spin-/ particle, we define the
Fibonacci Levin-Wen Hamiltonian [, ],

H = –
∑

v
Qv –

∑

p
Bp, ()

where Qv and Bp are operators that are respectively associated with vertex v and plaquette
p of the lattice, see Figure .

The vertex operator Qv acts on the three qubits residing on the edges that meet at ver-
tex v. If the states of the three qubits on theses edges are |i〉, |j〉, and |k〉, then we have

Qv|ijk〉 = δijk|ijk〉, ()

with

δijk =

⎧
⎨

⎩
 if ijk = , , , , ,

 otherwise.
()

The plaquette operators are more complicated and involve -qubit interactions. Consider
the twelve qubits a– and i– around a given plaquette p, see Figure (b). The plaquette
operators are then defined through

Bp =


 + φ

(
B

p + φBτ
p
)
, ()

with φ = +
√


 the golden ratio and

Bs
p|a, . . . , a, i, . . . , i〉 =

∑

i′,...,i′

Bs,i′,...,i′
p,i,...,i (a, . . . , a)

∣∣a, . . . , a, i′, . . . , i′
〉
, ()

where s = , τ and

Bs,i′,...,i′
p,i,...,i (a, . . . , a) = Faii

si′i′
Faii

si′i′
· · ·Faii

si′i′
Faii

si′i′
. ()
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For the Fibonacci theory we have []

Fτττ
τ =

(
φ– φ–/

φ–/ –φ–

)
, ()

and all other F ’s are trivial. One can then show that the Levin-Wen plaquette and star
operators satisfy [Bp, Qv] = [Bp, Bp′ ] = [Qv, Qv′ ] = , for all v, v′, p, p′ [, ].

We define the Fibonacci code [] F (an example of a stabilizer code) as the ground-state
subspace of Hamiltonian (), namely

F =
{|ψ〉|Qv|ψ〉 = Bp|ψ〉 = |ψ〉,∀p, v

}
. ()

On a surface with nontrivial topology this ground-state subspace of Hamiltonian ()
is degenerate and one uses this set of states to encode logical qubits. A nontrivial op-
eration (a logical error) applied to the logical qubit is implemented by creating pairs of
τ -excitations, braiding them, and annihilating them. The logical operation does not de-
pend on the details of the braiding process, but only on its topology; this is in fact the
main idea of topological quantum computation []. Importantly, Fibonacci anyons are
universal for quantum computation and any quantum gate can thus be performed in a
topologically protected fashion.

Recently, Ref. [] has shown how to explicitly construct quantum circuits that measure
plaquette and vertex operators of the Fibonacci Levin-Wen model; this is required to mea-
sure the error syndrome of F and to decide how to perform error correction. Here we go
one step further and determine the optimal qubit-coupler architecture to realize those
quantum circuits. It is not the goal of the present work to review in detail how vertex and
plaquette quantum circuits are constructed. But these circuits indicate which qubits must
be coupled and this indicates the binary linear program of Section  that is to be solved
to obtain the optimal architecture. For the sake of completeness in Figure  we reproduce
the circuit of Ref. [] for the plaquette reduction method.

We note here that ancillary qubits are needed to perform non-demolition measurements
of Qv and Bp. According to the plaquette reduction method of Ref. [], in Figure  the
ancillary qubit α is used to measure Bp, while the ancillary qubits α– are used to measure
the six vertex operators Qv.

Here we choose the cost function CS that measures the geometric length of the TLR
corresponding to S = {i, i, . . . , im},

CS = min
σ

{ m∑

k=

|xiσ (k) – xiσ (k–) |
}

, ()

where σ is a permutation of m elements.
Said differently, CS is the geometric length of the shortest path going through all the TQs

specified in the string S . In this work we thus look for the TLR scheme that minimizes the
total length of the TLR wires.

Following the plaquette reduction method of Ref. [] and using the notation of Figure ,
we present in Table  the setPreduction of two-qubit couplings that are necessary to measure
the six vertex operators and the single plaquette operator of Figure .
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Figure 3 Figure reproduced with permission from Ref. [9]: quantum circuit for the plaquette
reduction method. (a) Full circuit for the plaquette reduction method to calculate the value of the plaquette
operator Bp . The numbering of the qubits is that of Figure 2(b). The individual gates of the circuit are detailed
in (b). (b) Each element of the circuit in (a) is reduced to X-gates, S-gates, single qubit rotations R(ρ ŷ) by an
angle ρ along the y-axis, controlled-X gates, controlled-S gates, and Toffoli gates.

Having in hand Preduction, we can solve the binary linear program of Section  and de-
termine the optimal TLR scheme. The result is summarized in Table  and a pictorial
representation is given in Figure .

For completeness, we also investigate the plaquette swapping method of Ref. [] to
measure plaquette operators. In this case, more ancillary qubits are required, see Figure .
For the sake of completeness, in Figure  we reproduce the plaquette swapping circuit
of Ref. []. The set Pswapping of two-qubit couplings required by the plaquette swapping
method is summarized in Table . Again, we solve the binary linear program and find the
optimal architecture of Table ; here we have again chosen m = p = . As the pictorial
representation would be too crowded, we refrain from drawing the TLRs corresponding
to Table .

.. Scaling
While binary linear programs can be solved rapidly for a small number of qubits, as is
the case for the  data qubits of Figures  and , the problem becomes rapidly unsolvable
when we increase the number of qubits. This seems to be problematic as one wants to find
the optimal architecture for a large Levin-Wen model and not only for a single plaquette.
Fortunately, most of the time there is a lot of redundancy in the problem in the sense
that a fundamental circuit unit can be identified and translated over the whole lattice.
In fact, if one wants for example to measure all the vertex and plaquette operators of a
large Fibonacci Levin-Wen model, the circuit will look the same around any plaquette of
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Table 1 We list the set Preduction of all the two-qubit couplings required to measure the
plaquette p and the six vertex operators of Figure 2, following the plaquette reduction
method of Ref. [9]

Primary qubit Qubits to which the primary qubit couples

α0 i6
a1 a6, i1, i2, i6, α1

a2 i1, i2, i3, i6, α2

a3 i2, i3, i4, i6, α3

a4 i3, i4, i5, i6, α4

a5 i4, i5, i6, α5

a6 a1, i1, i2, i6, α6

i1 a1, a2, a6, i2, i3, i6, α1, α6

i2 a1, a2, a6, i1, i3, i4, i6, α1, α2

i3 a2, a3, a4, i1, i2, i4, i5, i6, α2, α3

i4 a3, a4, a5, i2, i3, i5, i6, α3, α4

i5 a4, a5, i3, i4, i6, α4, α5

i6 α0, a1, a2, a3, a4, a5, a6, i1, i2, i3, i4, i5, α5, α6

α1 a1, i1, i2
α2 a2, i2, i3
α3 a3, i3, i4
α4 a4, i4, i5
α5 a5, i5, i6
α6 a6, i1, i6

The data and ancillary qubits are labeled according to the notation of Figure 2.

Table 2 Information about the optimal TLR scheme obtained by solving the binary linear
program for the measurement of the plaquette operator Bp and the six vertex operators Qv of
Figure 2, following the plaquette reduction method of Ref. [9]

Length of the TLR wire Qubits contained inside the TLR wire

2.52 a.u. a6, α0, i6, α6, i1
4.73 i6, a6, a1, i2, a2
3.15 i1, i2, a2, α2, i3
4.73 i2, i3, α3, i4, a3
3.15 i3, a3, a4, i5, i6
3.15 i6, α5, a5, i5, i4

1.15 i1, α1, a1
1.15 i4, α4, a4

0.58 i2, α1

0.58 i5, α4

In particular, all the two-qubit couplings of Preduction in Table 1 are realized: there are no more than five TQs in each TLR,
and each TQ couples to maximally four TLRs. A pictorial representation of this TLR scheme and of the arbitrary unit (a.u.) is
given in Figure 4.

the lattice. In such a scenario, it is possible to identify a small number of qubits that we
couple optimally and that we translate to cover the whole lattice. The aim of this section
is thus to introduce a simple method to optimally solve a given unit cell of the model
that can be scaled up by simple translation to build a large two-dimensional lattice, see
Figure . For the sake of simplicity, we just focus here on the plaquette swapping method
of Ref. []. In Table  we present the set P

swapping of two-qubit couplings that are required
between the qubits of unit cell , see Figure , and the remaining qubits of the lattice. If
one would now straightforwardly solve the binary linear program for the unit cell, as we
did in Section ., then one would encounter the problem of equivalent connections, i.e.,
connections that are doubled due to the shifting of the unit cell. As an explicit example, let
us consider the connection between qubits i, and i, as well as the connection between
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Figure 4 Pictorial representation of the optimal
architecture of Table 2. In (a) we show the TLRs that
contain five TQs. The length of the arbitrary unit (a.u.) is
depicted by the dashed arrow. In (b) we show the TLRs
that contain three and two TQs.

Figure 5 The data qubits of the Fibonacci Levin-Wen
model are represented by black dots. This qubit layout is
appropriate for the plaquette swapping method of Ref.
[28]. The ancillary qubits, necessary to perform
non-demolition measurements of plaquette and vertex
operators, are represented by green squares.

qubits i, and i,, see Figure . It is straightforward to see that after translating unit cell
 onto unit cell , a TLR will be doubled. In order to avoid such doublings, one needs to
slightly modify the algorithm as follows.

Consider a given unit cell  and two distinct strings S and S that each contains at
least one site inside unit cell . We say that S = {i, i, . . . , im} and S = {j, j, . . . , jm} are
equivalent if ∀k ∈ [, m] ∃
 ∈ [, m] such that

xik = xj
 + λv + λv, ()

where λ, ∈ Z and v, are basis vectors of the lattice, see Figure . If a TLR scheme pos-
sesses a TLR hosting the qubits along S and another TLR hosting the qubits along S,
it is clear that this will not be optimal. Indeed, when we translate unit cell  by the vec-
tor λv + λv and the associated TLRs, to cover the whole lattice, then some TLRs will
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Table 3 The set Pswapping of all the two-qubit couplings required to measure the plaquette p
and the six vertex operators of Figure 5, following the plaquette swapping method of Ref. [28]

Primary Qubit Qubits to which the primary qubit couples

α0 α9

a1 i1, i2, α1, α7, α9

a2 i2, i3, α2, α7, α9

a3 i3, i4, α3, α7, α9

a4 i4, i5, α4, α7, α9

a5 i5, i6, α5, α7, α9

a6 i1, i6, α6, α7, α8, α9

i1 a1, a6, i2, i6, α1, α6, α7, α8, α9

i2 a1, a2, i1, i3, α1, α2, α7, α9

i3 a2, a3, i2, i4, α2, α3, α7, α9

i4 a3, a4, i3, i5, α3, α4, α7, α9

i5 a4, a5, i4, i6, α4, α5, α7, α9

i6 a5, a6, i1, i5, α5, α6, α7, α8, α9

α1 a1, i1, i2
α2 a2, i2, i3
α3 a3, i3, i4
α4 a4, i4, i5
α5 a5, i5, i6
α6 a6, i1, i6
α7 a1, a2, a3, a4, a5, a6, i1, i2, i3, i4, i5, i6, α8, α9

α8 a6, i1, i6, α7, α9

α9 α0, a1, a2, a3, a4, a5, a6, i1, i2, i3, i4, i5, i6, α7, α8

The data and ancillary qubits are labeled according to the notation of Figure 5.

Table 4 The optimal TLR scheme obtained by solving the binary linear program for the
measurement of the plaquette operator Bp and the six vertex operators Qv of Figure 5,
following the plaquette swapping method of Ref. [28]

Length of the TLR wire Qubits contained inside the TLR wire

2.52 a.u. α9, α8, i6, α0, a6
2.84 a1, i1, α7, α8, α9

4.04 α7, α9, i4, i3, a3
4.30 α9, α7, a5, i5, a4
2.44 i1, α7, α6, i6, a6

2.15 i2, α1, i1, a1
2.15 i3, α2, i2, a2
3.04 α7, α9, i2, a2
2.15 i5, α4, i4, a4
1.63 i5, α5, i6, a5

1.15 i4, α3, a3

0.58 i3, α3

In particular, all the two-qubit couplings of Pswapping in Table 3 are realized: there are no more than five TQs in each TLR, and
each TQ couples to maximally four TLRs.

be doubled. Having set these definitions, we present the steps that we follow to find the
optimal scalable TLR without doubled TLRs.

• Consider the set P
swapping of two-qubit couplings that contains at least one qubit in

the unit cell .
• Define W as the set of TLR schemes that include all TLRs that are not superfluous

with respect to P
swapping and all their equivalent TLRs.

• Out of every set of equivalent TLRs, choose one unique representative TLR. For each
TLR scheme Wm ∈W, define an associated TLR scheme Bm. This scheme Bm includes
the same TLRs as Wm but contains the following TLRs: All TLRs that do not have an
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Figure 6 Figure reproduced with permission from Ref. [28]. Quantum circuit for the plaquette swapping
method of Ref. [28]. The qubits labeling is the one of Figure 5. The individual elements of the circuits can be
found in Figure 3.

Figure 7 Trivalent lattice on which the
Levin-Wen model is defined. The lattice is
obtained by translating the unit cell 0 by the unit
vectors v1 and v2. For example, the unit cell 1 is
obtained by translating unit cell 0 by –v2. For the
sake of clarity, we do not represent all the qubits of
the lattice. Instead, we draw and label the data
(black dots) and ancillary (green squares) qubits of a
given unit cell k. This qubit layout is appropriate for
the plaquette swapping method [28].

equivalent TLR and are contained in Wm as well as all representatives for which Wm

contains at least one equivalent TLR. We call this new set of TLR schemes B.
• For each TLR scheme Bm ∈B, define a new TLR scheme Vm that includes the same

TLRs as Bm and contains all the TLRs that are contained in Bm as well as all
equivalent TLRs.

• Perform the linear optimization over B to find a TLR scheme Bm that minimizes the
cost C(Bm)t · Bm such that

. Vm realizes every two-qubit coupling of P
swapping.

. For all ij ∈ {, , . . . , N},

∑

S∈Sm|ij∈S
κS ≤ p. ()
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Table 5 The set P0
swapping of two-qubit connections between qubits in unit cell 0 of Figure 7

and the remaining qubits of the lattice, following the plaquette swapping method of Ref. [28]

Qubit q in unit cell 0 Qubits to which q couples

i0,1 α0,7, i0,6, α0,8, α0,9, i1,5, α1,4, i1,6, α1,9, α2,7, i2,5, α2,5, i2,6, α2,9, i6,6, α6,9

i0,5 α0,7, α0,5, α0,4, i0,6, α0,9, α4,7, i4,1, i4,6, α4,7, α4,9, i5,1, i5,6, α5,9, i6,6, α6,9

i0,6 α0,7, i0,1, i0,5, α0,8, α0,9, i1,5, α2,7, i2,5, α3,7, i3,1, i3,5, α4,7, i4,1, i5,1
α0,0 α0,9

α0,4 i0,5, α4,7, i4,1
α0,5 α0,7, i0,5, i5,1
α0,7 i0,1, i0,5, α0,5, i0,6, α0,8, α0,9, i1,5, α1,4, i1,6, α1,9, i5,1, i5,6, α5,9, i6,6, α6,9

α0,8 α0,7, i0,1, i0,6, α0,9, i1,5,
α0,9 α0,7, i0,1, i0,5, α0,0, i0,6, α0,8, i1,5, α2,7, i2,5, α3,7, i3,1, i3,5, α4,7, i4,1, i5,1

4 α0,7, i0,1, α0,8, α1,4

3 i0,5, α0,5, α0,4

Table 6 Optimal TLR scheme for the set of couplings P0
swpapping , i.e., for couplings between

qubits in the unit cell 0 and the rest of the lattice

Length of the TLR Qubits contained inside the TLR wire

3.57 a.u. i0,6, α0,9, i2,5, α3,7, i3,1
3.15 α1,9, α1,7, i1,6, i1,5, α0,7

3.48 α2,7, α2,5, i0,1, α0,9, i0,6
2.52 i0,5, α4,0, i4,6, α4,8, α4,9

3.80 i17,1, i6,6, α6,9, i5,1, i0,5

1.44 α0,8, α0,7, α1,4, i0,1

1.15 α0,4, i0,5, α0,5

By translating this TLR scheme to the remaining unit cells of the lattice, one obtains an optimal TLR scheme for the entire
lattice that avoids doubled TLRs.

Figure 8 Pictorial representation of the optimal scalable
solution of Table 6. The TLRs couple qubits inside unit cell 0 to
the rest of the lattice. This architecture can be translated to cover
the whole lattice without generating doubled TLRs. The TLRs are
represented by solid and dashed lines for clarity when they
traverse the same path. The squares denote the starting and
ending points of TLRs. Note that the four qubit TLR, that contains
qubits α0,8 , α0,7 , α1,4 , i0,1 has not be drawn, but instead we have
drawn it translated (yellow, dashed) for the sake of a clear figure.

Following the above algorithm, we find the scalable optimal architectures presented in
Table  and Figure .

3.2 Surface code
The surface code [] is a planar version of Kitaev’s toric code [] and represents arguably
the most promising quantum computing architecture. It is thus justified to determine its
optimal architecture using the simple formalism developed in this work, in particular be-
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Figure 9 Pictorial representation of the surface
code. Data qubits reside on the vertices of the
lattice and are here depicted by black dots. Products
of data qubits around dark (light) squares
correspond to plaquette (star) operators. The green
squares are ancillary qubits necessary to measure
plaquette and star operators in a non-demolition
fashion. We choose the unit cell 0 (dashed square)
to generate the whole lattice by translations. The
two data qubits and the two ancillary qubits of a
unit cell are labeled as shown in the figure. This
choice of boundary conditions leads to a twofold
degeneracy of the surface code S in Eq. (18).

Table 7 The set P0
surface of couplings between qubits of the unit cell 0 and the rest of the

lattice to measure plaquette and star operators of the surface code, see Figure 9

Qubit q in unit cell 0 Qubits to which q couples

i0,1 α0,1, α0,2, α3,1, α2,2

α0,1 i0,1, i0,2, i1,1, i2,2
i0,2 α0,1, α0,2, α1,2, α4,1

α0,2 i0,1, i0,2, i4,1, i3,2

cause experimental groups are nowadays starting to build small fragments of the surface
code.

Consider a square lattice with a spin-/ particle on each vertex, see Figure . We define
the star operators As and plaquette operators Bp of the surface code as

As = σ x
s,σ

x
s,σ

x
s,σ

x
s,, ()

Bp = σ x
p,σ

x
p,σ

x
p,σ

x
p,, ()

where s and p label respectively light and dark squares of the lattice, see Figure . Note
that plaquette and star operators at the boundaries are products of three qubit operators
and not four as is the case in the bulk. Similar to the Fibonacci code, we define the surface
code S as

S =
{|ψ〉|As|ψ〉 = Bp|ψ〉 = |ψ〉,∀p, s

}
. ()

With the boundary conditions represented in Figure , the surface code is twofold degen-
erate and can thus encode a logical qubit []. Similar to the Fibonacci code, the surface
code is a topological code and it is thus protected against local (static) perturbations. Its
most striking property is its surprisingly high error threshold of about %, see Ref. [] for
a detailed review on this subject.

Here we do not review the construction of quantum circuits to measure star and pla-
quette operators of the surface code, rather, using the notation of Figure , in Table  we
show the set P

surface of two-qubit couplings required to measure the eigenvalues of As and
Bp in a scalable manner []. As was the case for the Fibonacci code, we need to introduce
ancillary qubits to measure plaquette and star operators non-destructively.
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Figure 10 Optimal scalable TLR scheme for the surface
code. The problem is first solved for the couplings between
qubits of unit cell 0 and the rest of the lattice, and then we
have translated the result to cover the whole lattice. This
results is equivalent to the one originally proposed in Ref.
[13]. The TLRs are represented by solid lines and the squares
denote the starting and ending points of TLRs. Note that
rotating each individual four-qubit TLR by 90 degrees leads
obviously to another optimal solution. The two-qubit TLRs
on the edges and the three-qubit TLRs on the corners
(purple) have been put by hand, since a full optimization
solution of a smaller surface code lead to such a pattern of
boundary two- and three-qubit TLRs. Indeed, it seems clear
that this solution at the boundaries remains optimal for a
larger surface code.

Solving the binary linear optimization problem with m = , we find the scalable optimal
TLR scheme reported in Figure . The result is that each bulk TLR hosts four TQs and
each bulk TQ is hosted by two TLRs. Interestingly, this result is the one originally proposed
in Ref. [], see also Ref. []. We point out that the optimal architecture of Figure  is
clearly valid for the smallest possible surface code (consisting of  data qubits and 
ancillary qubits) able to detect and correct a single physical qubit error. In fact, we have
solved our optimization problem for this small surface code directly and obtained the
solution of Figure  with two- and three-qubit TLRs at the boundaries.

.. Distance  surface code
As a final relevant explicit example, we consider a surface code that can correct two physi-
cal errors. While the surface code depicted in Figure  would contain  data qubits and 
ancillary qubits in order to detect and cure two physical errors, there are simple methods
to reduce the number of qubits while keeping the distance the same []. Such modifi-
cations are important for small-scale implementations of surface codes in a near future;
indeed there is clearly an intention to realize a quantum code that requires the smallest
possible amount of resource. Here we follow the approach of Ref. [] and consider the ro-
tated surface code of Figure . The qubits that are part of the rotated code reside inside the
black square and some of the boundary ancillary qubits are also incorporated to measure
the boundary stabilizers. As was shown in Ref. [], such rotated surface code can correct
two physical qubit errors although it possesses many fewer than  data qubits, in fact it
consists only of  data qubits and  ancillary qubits. Furthermore, one can do slightly
better by requiring not each stabilizer to have its individual ancillary qubit but instead by
re-using an ancillary qubit to measure several stabilizer operators. We thus remove the 
ancillary qubits with a (yellow) cross in Figure .

We can now solve the linear binary program and find the optimal architecture given in
Figure .

4 Conclusions
In this work we have developed a methodology to find optimal architectures for quantum
codes. Our starting point is to consider a two-dimensional lattice of transmon qubits that
interact with each others over moderate distances by coupling them to transmission line
resonators. For each layout, we define a cost that allows to designate an optimal scheme.



Wosnitzka et al. EPJ Quantum Technology  (2016) 3:4 Page 15 of 16

Figure 11 Pictorial representation of the rotated
surface code. The black dots represent data qubits and
the green squares ancillary qubits. The rotated surface
code [30] contains all the qubits inside the solid square
as well as the ancillary qubits surrounded by a black line.
In this case, the rotated surface code contains 25 data
qubits and 24 ancillary qubits; each ancillary qubit is used
to measure exactly one stabilizer. However, one can
slightly improve the resource needed by re-using
ancillary qubits; we associate many of the ancillary qubits
to more than one plaquette and star operator
measurements. We thus remove the ancillary qubits with
a yellow cross. Here we list which qubits replace the
crossed qubits in the syndrome-computation circuit:
qubit 2 is replaced by qubit 3, qubit 5 is replaced by
qubit 6, qubit 7 is replaced by qubit 8, qubit 10 is
replaced by qubit 11, qubit 13 is replaced by qubit 14,
qubit 15 is replaced by qubit 16, qubit 17 is replaced by qubit 1, qubit 18 is replaced by qubit 3, qubit 19 is
replaced by qubit 4, qubit 20 is replaced by qubit 12, qubit 21 is replaced by qubit 16, qubit 22 is replaced by
qubit 14, qubit 23 is replaced by qubit 14, qubit 24 is replaced by qubit 6.

Figure 12 Optimal TLR scheme for the rotated
surface code of Figure 11, able to detect and correct
two physical qubit errors. The TLRs are represented by
solid lines with starting and ending points depicted by
squares.

We show that finding such optimal scheme reduces to solve standard binary programs.
What optimal means here depends obviously on the choice of a cost function. While we
decided to choose to optimize over the total length of transmission line resonators for
the Fibonacci and surface codes, our formalism is general enough to be straightforwardly
applicable to many other codes and cost functions. While further experimental and theo-
retical studies will be necessary to determine which cost function will turn out to be most
relevant in practice, we believe that our work represents a useful methodology to inves-
tigate a large number of layouts and find an optimal one according to some metric. In
particular, we show how to apply our method to a restricted set of qubit and couplers that
can be scaled up to a large two-dimensional structure.
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