001     824321
005     20240625095028.0
024 7 _ |a arXiv:1510.03211
|2 arXiv
024 7 _ |a 10.1140/epjqt/s40507-016-0044-6
|2 doi
024 7 _ |a 2128/13665
|2 Handle
024 7 _ |a WOS:000407193900001
|2 WOS
024 7 _ |a altmetric:4616154
|2 altmetric
037 _ _ |a FZJ-2016-06930
082 _ _ |a 530
100 1 _ |a Criger, Ben
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Multi-Qubit Joint Measurements in Circuit QED: Stochastic Master Equation Analysis
260 _ _ |a Berlin
|c 2016
|b Springer Open
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485716943_5884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We derive a family of stochastic master equations describing homodyne measurement of multi-qubit diagonal observables in circuit quantum electrodynamics. Our approach replaces the polaron-like transformation of previous work, which required a lengthy calculation for the physically interesting case of three qubits and two resonator modes. The technique introduced here makes this calculation straightforward and manifestly correct. Using this technique, we are able to show that registers larger than one qubit evolve under a non-Markovian master equation. We perform numerical simulations of the three-qubit, two-mode case from previous work, obtaining an average post-measurement state fidelity near 94%.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Ciani, Alessandro
|0 P:(DE-HGF)0
|b 1
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 2
773 _ _ |a 10.1140/epjqt/s40507-016-0044-6
|g Vol. 3, no. 1, p. 6
|0 PERI:(DE-600)2784501-1
|n 1
|p 6
|t EPJ Quantum Technology
|v 3
|y 2016
|x 2196-0763
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824321/files/art_10.1140_epjqt_s40507-016-0044-6.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824321/files/art_10.1140_epjqt_s40507-016-0044-6.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824321/files/art_10.1140_epjqt_s40507-016-0044-6.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824321/files/art_10.1140_epjqt_s40507-016-0044-6.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824321/files/art_10.1140_epjqt_s40507-016-0044-6.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/824321/files/art_10.1140_epjqt_s40507-016-0044-6.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:824321
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21