000824322 001__ 824322
000824322 005__ 20240625095028.0
000824322 0247_ $$2doi$$a10.1103/PhysRevApplied.5.044004
000824322 0247_ $$2arXiv$$aarXiv:1511.01760
000824322 0247_ $$2Handle$$a2128/13045
000824322 0247_ $$2WOS$$aWOS:000373586600001
000824322 0247_ $$2altmetric$$aaltmetric:4730723
000824322 037__ $$aFZJ-2016-06931
000824322 082__ $$a530
000824322 1001_ $$0P:(DE-HGF)0$$aSamkharadze, N.$$b0
000824322 245__ $$aHigh-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field
000824322 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2016
000824322 3367_ $$2DRIVER$$aarticle
000824322 3367_ $$2DataCite$$aOutput Types/Journal article
000824322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480421771_20526
000824322 3367_ $$2BibTeX$$aARTICLE
000824322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824322 3367_ $$00$$2EndNote$$aJournal Article
000824322 520__ $$aWe present superconducting microwave-frequency resonators based on NbTiN nanowires. The small cross section of the nanowires minimizes vortex generation, making the resonators resilient to magnetic fields. Measured intrinsic quality factors exceed $2\times 10^5$ in a $6$ T in-plane magnetic field, and $3\times 10^4$ in a $350$ mT perpendicular magnetic field. Due to their high characteristic impedance, these resonators are expected to develop zero-point voltage fluctuations one order of magnitude larger than in standard coplanar waveguide resonators. These properties make the nanowire resonators well suited for circuit QED experiments needing strong coupling to quantum systems with small electric dipole moments and requiring a magnetic field, such as electrons in single and double quantum dots.
000824322 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000824322 588__ $$aDataset connected to arXivarXiv, CrossRef
000824322 7001_ $$0P:(DE-HGF)0$$aBruno, A.$$b1
000824322 7001_ $$0P:(DE-HGF)0$$aScarlino, P.$$b2
000824322 7001_ $$0P:(DE-HGF)0$$aZheng, G.$$b3
000824322 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b4$$eCorresponding author$$ufzj
000824322 7001_ $$0P:(DE-HGF)0$$aDiCarlo, L.$$b5
000824322 7001_ $$0P:(DE-HGF)0$$aVandersypen, L. M. K.$$b6
000824322 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.5.044004$$gVol. 5, no. 4, p. 044004$$n4$$p044004$$tPhysical review applied$$v5$$x2331-7019$$y2016
000824322 8564_ $$uhttps://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.pdf$$yOpenAccess
000824322 8564_ $$uhttps://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.gif?subformat=icon$$xicon$$yOpenAccess
000824322 8564_ $$uhttps://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824322 8564_ $$uhttps://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824322 8564_ $$uhttps://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824322 8564_ $$uhttps://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824322 909CO $$ooai:juser.fz-juelich.de:824322$$pdnbdelivery$$popenaire$$pVDB$$pdriver$$popen_access
000824322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b4$$kFZJ
000824322 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000824322 9141_ $$y2016
000824322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824322 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000824322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2015
000824322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824322 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824322 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824322 920__ $$lyes
000824322 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000824322 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000824322 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000824322 980__ $$ajournal
000824322 980__ $$aVDB
000824322 980__ $$aUNRESTRICTED
000824322 980__ $$aI:(DE-Juel1)IAS-3-20090406
000824322 980__ $$aI:(DE-Juel1)PGI-2-20110106
000824322 980__ $$aI:(DE-82)080012_20140620
000824322 9801_ $$aFullTexts
000824322 981__ $$aI:(DE-Juel1)PGI-2-20110106