Hauptseite > Publikationsdatenbank > High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field > print |
001 | 824322 | ||
005 | 20240625095028.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.5.044004 |2 doi |
024 | 7 | _ | |a arXiv:1511.01760 |2 arXiv |
024 | 7 | _ | |a 2128/13045 |2 Handle |
024 | 7 | _ | |a WOS:000373586600001 |2 WOS |
024 | 7 | _ | |a altmetric:4730723 |2 altmetric |
037 | _ | _ | |a FZJ-2016-06931 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Samkharadze, N. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2016 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1480421771_20526 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present superconducting microwave-frequency resonators based on NbTiN nanowires. The small cross section of the nanowires minimizes vortex generation, making the resonators resilient to magnetic fields. Measured intrinsic quality factors exceed $2\times 10^5$ in a $6$ T in-plane magnetic field, and $3\times 10^4$ in a $350$ mT perpendicular magnetic field. Due to their high characteristic impedance, these resonators are expected to develop zero-point voltage fluctuations one order of magnitude larger than in standard coplanar waveguide resonators. These properties make the nanowire resonators well suited for circuit QED experiments needing strong coupling to quantum systems with small electric dipole moments and requiring a magnetic field, such as electrons in single and double quantum dots. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to arXivarXiv, CrossRef |
700 | 1 | _ | |a Bruno, A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Scarlino, P. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zheng, G. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a DiVincenzo, David |0 P:(DE-Juel1)143759 |b 4 |e Corresponding author |u fzj |
700 | 1 | _ | |a DiCarlo, L. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Vandersypen, L. M. K. |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1103/PhysRevApplied.5.044004 |g Vol. 5, no. 4, p. 044004 |0 PERI:(DE-600)2760310-6 |n 4 |p 044004 |t Physical review applied |v 5 |y 2016 |x 2331-7019 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/824322/files/PhysRevApplied.5.044004.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:824322 |p open_access |p driver |p VDB |p openaire |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)143759 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-3-20090406 |k IAS-3 |l Theoretische Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 1 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|