000824329 001__ 824329
000824329 005__ 20210129225019.0
000824329 0247_ $$2arXiv$$aarXiv:1604.08349
000824329 0247_ $$2Handle$$a2128/13470
000824329 0247_ $$2altmetric$$aaltmetric:7063735
000824329 037__ $$aFZJ-2016-06938
000824329 1001_ $$0P:(DE-HGF)0$$aChatterji, T.$$b0$$eCorresponding author
000824329 245__ $$aTemperature evolution of magnetic structure of HoFeO$_3$ by single crystal neutron diffraction
000824329 260__ $$c2016
000824329 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1484724526_22332
000824329 3367_ $$2ORCID$$aWORKING_PAPER
000824329 3367_ $$028$$2EndNote$$aElectronic Article
000824329 3367_ $$2DRIVER$$apreprint
000824329 3367_ $$2BibTeX$$aARTICLE
000824329 3367_ $$2DataCite$$aOutput Types/Working Paper
000824329 520__ $$aWe have investigated the temperature evolution of the magnetic structures of HoFeO$_3$ by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for \hfo\ are described by the magnetic groups Pb$2_1$, Pbn$2_1$ and Pbn$2_1$ and are stable in the temperature ranges $\approx$ 600-55~K, 55-37~K and 35$>T>2$~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along $x$ and $y$, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in \hfo\ the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite.
000824329 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000824329 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000824329 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000824329 588__ $$aDataset connected to arXivarXiv
000824329 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000824329 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000824329 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000824329 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000824329 7001_ $$0P:(DE-Juel1)164297$$aMeven, M.$$b1$$ufzj
000824329 7001_ $$0P:(DE-HGF)0$$aBrown, P. J.$$b2
000824329 8564_ $$uhttps://arxiv.org/abs/1604.08349
000824329 8564_ $$uhttps://juser.fz-juelich.de/record/824329/files/hfo-v2.pdf$$yOpenAccess
000824329 8564_ $$uhttps://juser.fz-juelich.de/record/824329/files/hfo-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824329 909CO $$ooai:juser.fz-juelich.de:824329$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000824329 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b1$$kFZJ
000824329 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000824329 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000824329 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000824329 9141_ $$y2016
000824329 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824329 920__ $$lyes
000824329 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000824329 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000824329 980__ $$apreprint
000824329 980__ $$aVDB
000824329 980__ $$aUNRESTRICTED
000824329 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000824329 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000824329 9801_ $$aFullTexts
000824329 981__ $$aI:(DE-Juel1)JCNS-2-20110106