001     824330
005     20250314084115.0
020 _ _ |a 978-1-5090-5226-4
024 7 _ |a 10.1109/vpa.2016.7
|2 doi
037 _ _ |a FZJ-2016-06939
100 1 _ |a Vierjahn, Tom
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a The 3rd International Workshop on Visual Performance Analysis
|g VPA'16
|c Salt Lake City, Utah
|d 2016-11-18 - 2016-11-18
|w USA
245 _ _ |a Using Directed Variance to Identify Meaningful Views in Call-path Performance Profiles
260 _ _ |a Piscataway, NJ, USA
|c 2016
|b IEEE Press
295 1 0 |a Proceedings of the 3rd International Workshop on Visual Performance Analysis
300 _ _ |a 9-16
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1480930659_8032
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Understanding the performance behaviour of massively parallel high-performance computing (HPC) applications based on call-path performance profiles is a time-consuming task. In this paper, we introduce the concept of directed variance in order to help analysts find performance bottlenecks in massive performance data and in the end optimize the application. According to HPC experts' requirements, our technique automatically detects severe parts in the data that expose large variation in an application's performance behaviour across system resources. Previously known variations are effectively filtered out. Analysts are thus guided through a reduced search space towards regions of interest for detailed examination in a 3D visualization. We demonstrate the effectiveness of our approach using performance data of common benchmark codes as well as from actively developed production codes.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Scalable Performance Analysis of Large-Scale Parallel Applications (jzam11_20091101)
|0 G:(DE-Juel1)jzam11_20091101
|c jzam11_20091101
|f Scalable Performance Analysis of Large-Scale Parallel Applications
|x 1
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 2
700 1 _ |a Hermanns, Marc-André
|0 P:(DE-Juel1)168253
|b 1
|u fzj
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 2
|u fzj
700 1 _ |a Müller, Matthias S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kuhlen, Torsten W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hentschel, Bernd
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1109/vpa.2016.7
909 C O |o oai:juser.fz-juelich.de:824330
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168253
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132199
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21