000824364 001__ 824364
000824364 005__ 20250813203207.0
000824364 0247_ $$2doi$$a10.1002/srin.201500129
000824364 0247_ $$2ISSN$$a0177-4832
000824364 0247_ $$2ISSN$$a1611-3683
000824364 0247_ $$2WOS$$aWOS:000375688300002
000824364 0247_ $$2altmetric$$aaltmetric:21831630
000824364 037__ $$aFZJ-2016-06964
000824364 082__ $$a620
000824364 1001_ $$0P:(DE-HGF)0$$aBambach, Margarita D.$$b0$$eCorresponding author
000824364 245__ $$aTailoring the Hardening Behavior of 18CrNiMo7-6 via Cu Alloying
000824364 260__ $$aWeinheim$$bWiley-VCH73294$$c2016
000824364 264_1 $$2Crossref$$3online$$bWiley$$c2015-08-10
000824364 264_1 $$2Crossref$$3print$$bWiley$$c2016-05-01
000824364 264_1 $$2Crossref$$3print$$bWiley$$c2016-05-01
000824364 3367_ $$2DRIVER$$aarticle
000824364 3367_ $$2DataCite$$aOutput Types/Journal article
000824364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755003945_25775
000824364 3367_ $$2BibTeX$$aARTICLE
000824364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824364 3367_ $$00$$2EndNote$$aJournal Article
000824364 520__ $$aIn order to improve the rolling contact fatigue (RCF) behavior of gear steels, a concept to increase their damage tolerance is developed alternatively to the conventional approach of improving the degree of steel cleanliness. For that purpose, Cu is used as a main alloying element in order to trigger the precipitation of nano-sized Cu precipitates which shall improve the strain-hardening rate of the martensitic matrix of Cu-alloyed 18CrNiMo7-6 steel surrounding a non-metallic inclusion during plastic deformation. In this way, early component failure may be avoided and the maintenance costs of, e.g., wind energy converters may be kept low. The experimental analysis shows that nano-sized Cu precipitates influence the material's strength, ductility, and strain-hardening behavior under tension, depending on their coherence. Among others, the latter is related to strain-induced martensitic transformation of coherent Cu. The structure of the Cu precipitates is studied by TEM and SANS analysis. The Cu-alloyed steel also shows an increased hardening-exponentCHT studied by cyclic hardness test (CHT) PHYBALCHT. Fatigue tests of specimens with coherent precipitates show cyclic hardening until a critical stress amplitude. Above that, stress amplitude cyclic softening is detected. An increased damage tolerance could be obtained for a 1 mass-% Cu-alloyed 18CrNiMo7-6 steel.
000824364 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000824364 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000824364 542__ $$2Crossref$$i2015-09-01$$uhttp://doi.wiley.com/10.1002/tdm_license_1.1
000824364 588__ $$aDataset connected to CrossRef
000824364 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000824364 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000824364 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000824364 7001_ $$0P:(DE-HGF)0$$aBleck, Wolfgang$$b1
000824364 7001_ $$0P:(DE-HGF)0$$aKramer, Hendrik S.$$b2
000824364 7001_ $$0P:(DE-HGF)0$$aKlein, Marcus$$b3
000824364 7001_ $$0P:(DE-HGF)0$$aEifler, Dietmar$$b4
000824364 7001_ $$0P:(DE-Juel1)129685$$aBeck, Tilmann$$b5
000824364 7001_ $$0P:(DE-HGF)0$$aSurm, Holger$$b6
000824364 7001_ $$0P:(DE-HGF)0$$aZoch, Hans-Werner$$b7
000824364 7001_ $$0P:(DE-HGF)0$$aHoffmann, Franz$$b8
000824364 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b9$$ufzj
000824364 77318 $$2Crossref$$3journal-article$$a10.1002/srin.201500129$$b : Wiley, 2015-08-10$$n5$$p550-561$$tsteel research international$$v87$$x1611-3683$$y2015
000824364 773__ $$0PERI:(DE-600)2148555-0$$a10.1002/srin.201500129$$gVol. 87, no. 5, p. 550 - 561$$n5$$p550-561$$tSteel research international$$v87$$x1611-3683$$y2016
000824364 909CO $$ooai:juser.fz-juelich.de:824364$$pVDB$$pVDB:MLZ
000824364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b9$$kFZJ
000824364 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000824364 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000824364 9141_ $$y2016
000824364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824364 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000824364 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000824364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTEEL RES INT : 2015
000824364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824364 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824364 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824364 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000824364 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC
000824364 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824364 920__ $$lyes
000824364 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000824364 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000824364 980__ $$ajournal
000824364 980__ $$aVDB
000824364 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000824364 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000824364 980__ $$aUNRESTRICTED