001     824364
005     20250813203207.0
024 7 _ |a 10.1002/srin.201500129
|2 doi
024 7 _ |a 0177-4832
|2 ISSN
024 7 _ |a 1611-3683
|2 ISSN
024 7 _ |a WOS:000375688300002
|2 WOS
024 7 _ |a altmetric:21831630
|2 altmetric
037 _ _ |a FZJ-2016-06964
082 _ _ |a 620
100 1 _ |a Bambach, Margarita D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Tailoring the Hardening Behavior of 18CrNiMo7-6 via Cu Alloying
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH73294
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2015-08-10
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2016-05-01
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2016-05-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755003945_25775
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to improve the rolling contact fatigue (RCF) behavior of gear steels, a concept to increase their damage tolerance is developed alternatively to the conventional approach of improving the degree of steel cleanliness. For that purpose, Cu is used as a main alloying element in order to trigger the precipitation of nano-sized Cu precipitates which shall improve the strain-hardening rate of the martensitic matrix of Cu-alloyed 18CrNiMo7-6 steel surrounding a non-metallic inclusion during plastic deformation. In this way, early component failure may be avoided and the maintenance costs of, e.g., wind energy converters may be kept low. The experimental analysis shows that nano-sized Cu precipitates influence the material's strength, ductility, and strain-hardening behavior under tension, depending on their coherence. Among others, the latter is related to strain-induced martensitic transformation of coherent Cu. The structure of the Cu precipitates is studied by TEM and SANS analysis. The Cu-alloyed steel also shows an increased hardening-exponentCHT studied by cyclic hardness test (CHT) PHYBALCHT. Fatigue tests of specimens with coherent precipitates show cyclic hardening until a critical stress amplitude. Above that, stress amplitude cyclic softening is detected. An increased damage tolerance could be obtained for a 1 mass-% Cu-alloyed 18CrNiMo7-6 steel.
536 _ _ |a 6G15 - FRM II / MLZ (POF3-6G15)
|0 G:(DE-HGF)POF3-6G15
|c POF3-6G15
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
542 _ _ |i 2015-09-01
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 0
700 1 _ |a Bleck, Wolfgang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kramer, Hendrik S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Klein, Marcus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eifler, Dietmar
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Beck, Tilmann
|0 P:(DE-Juel1)129685
|b 5
700 1 _ |a Surm, Holger
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zoch, Hans-Werner
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hoffmann, Franz
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Radulescu, Aurel
|0 P:(DE-Juel1)130905
|b 9
|u fzj
773 1 8 |a 10.1002/srin.201500129
|b : Wiley, 2015-08-10
|n 5
|p 550-561
|3 journal-article
|2 Crossref
|t steel research international
|v 87
|y 2015
|x 1611-3683
773 _ _ |a 10.1002/srin.201500129
|g Vol. 87, no. 5, p. 550 - 561
|0 PERI:(DE-600)2148555-0
|n 5
|p 550-561
|t Steel research international
|v 87
|y 2016
|x 1611-3683
909 C O |o oai:juser.fz-juelich.de:824364
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130905
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STEEL RES INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21