000824446 001__ 824446
000824446 005__ 20220930130111.0
000824446 0247_ $$2doi$$a10.1039/C6NR03810G
000824446 0247_ $$2ISSN$$a2040-3364
000824446 0247_ $$2ISSN$$a2040-3372
000824446 0247_ $$2WOS$$aWOS:000387331100006
000824446 037__ $$aFZJ-2016-07035
000824446 082__ $$a600
000824446 1001_ $$0P:(DE-Juel1)159348$$aKim, Wonjoo$$b0$$eCorresponding author
000824446 245__ $$aImpact of oxygen exchange reaction at the ohmic interface in Ta$_{2}$ O$_{5}$ -based ReRAM devices
000824446 260__ $$aCambridge$$bRSC Publ.$$c2016
000824446 3367_ $$2DRIVER$$aarticle
000824446 3367_ $$2DataCite$$aOutput Types/Journal article
000824446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557381887_24088
000824446 3367_ $$2BibTeX$$aARTICLE
000824446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824446 3367_ $$00$$2EndNote$$aJournal Article
000824446 520__ $$aInterface reactions constitute essential aspects of the switching mechanism in redox-based resistive random access memory (ReRAM). For example, the modulation of the electronic barrier height at the Schottky interface is considered to be responsible for the toggling of the resistance states. On the other hand, the role of the ohmic interface in the resistive switching behavior is still ambigious. In this paper, the impact of different ohmic metal-electrode (M) materials, namely W, Ta, Ti, and Hf on the characteristics of Ta2O5 ReRAM is investigated. These materials are chosen with respect to their free energy for metal oxide formation and, associated, their impact on the formation energy of oxygen vacancy defects at the M/Ta2O5 interface. The resistive switching devices with Ti and Hf electrodes that have a negative defect formation energy, show an early RESET failure during the switching cycles. This failure process with Ti and Hf electrode is attributed to the accumulation of oxygen vacancies in the Ta2O5 layer, which leads to permanent breakdown of the metal–oxide to a low resistive state. In contrast, the defect formation energy in the Ta2O5 with respect to Ta and W electrodes is positive and for those highly stable resistive switching behavior is observed. During the quasi-static and transient-pulse characterization, the ReRAM devices with the W electrode consistently show an increased high resistance state (HRS) than with the Ta electrode for all RESET stop voltages. This effect is attributed to the faster oxygen exchange reaction at the W-electrode interface during the RESET process in accordance to lower stability of WO3 than Ta2O5. Based on these findings, an advanced resistive switching model, wherein also the oxygen exchange reaction at the ohmic M-electrode interface plays a vital role in determining of the resistance states, is presented.
000824446 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000824446 588__ $$aDataset connected to CrossRef
000824446 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1
000824446 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b2
000824446 7001_ $$0P:(DE-HGF)0$$aGuo, Yuzheng$$b3
000824446 7001_ $$0P:(DE-HGF)0$$aRobertson, John$$b4
000824446 7001_ $$0P:(DE-HGF)0$$aRoesgen, Bernd$$b5
000824446 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b6
000824446 7001_ $$0P:(DE-Juel1)145504$$aRana, Vikas$$b7
000824446 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C6NR03810G$$gVol. 8, no. 41, p. 17774 - 17781$$n41$$p17774 - 17781$$tNanoscale$$v8$$x2040-3372$$y2016
000824446 8564_ $$uhttps://juser.fz-juelich.de/record/824446/files/c6nr03810g.pdf$$yRestricted
000824446 8564_ $$uhttps://juser.fz-juelich.de/record/824446/files/c6nr03810g.gif?subformat=icon$$xicon$$yRestricted
000824446 8564_ $$uhttps://juser.fz-juelich.de/record/824446/files/c6nr03810g.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000824446 8564_ $$uhttps://juser.fz-juelich.de/record/824446/files/c6nr03810g.jpg?subformat=icon-180$$xicon-180$$yRestricted
000824446 8564_ $$uhttps://juser.fz-juelich.de/record/824446/files/c6nr03810g.jpg?subformat=icon-640$$xicon-640$$yRestricted
000824446 8564_ $$uhttps://juser.fz-juelich.de/record/824446/files/c6nr03810g.pdf?subformat=pdfa$$xpdfa$$yRestricted
000824446 8767_ $$92016-12-09$$d2016-12-12$$eCover$$jZahlung erfolgt$$zGBP 1000,-
000824446 909CO $$ooai:juser.fz-juelich.de:824446$$pOpenAPC$$pVDB$$popenCost
000824446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159348$$aForschungszentrum Jülich$$b0$$kFZJ
000824446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000824446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b6$$kFZJ
000824446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145504$$aForschungszentrum Jülich$$b7$$kFZJ
000824446 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000824446 9141_ $$y2016
000824446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824446 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000824446 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000824446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824446 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824446 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824446 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824446 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824446 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000824446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824446 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000824446 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000824446 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000824446 980__ $$ajournal
000824446 980__ $$aVDB
000824446 980__ $$aI:(DE-Juel1)PGI-7-20110106
000824446 980__ $$aI:(DE-82)080009_20140620
000824446 980__ $$aI:(DE-Juel1)PGI-10-20170113
000824446 980__ $$aAPC
000824446 980__ $$aUNRESTRICTED
000824446 9801_ $$aAPC