000824450 001__ 824450
000824450 005__ 20210129225039.0
000824450 0247_ $$2doi$$a10.1038/srep20550
000824450 0247_ $$2Handle$$a2128/13094
000824450 0247_ $$2WOS$$aWOS:000369146300001
000824450 037__ $$aFZJ-2016-07039
000824450 082__ $$a000
000824450 1001_ $$0P:(DE-HGF)0$$aLee, Woongkyu$$b0
000824450 245__ $$aResistance switching behavior of atomic layer deposited SrTiO$_{3}$ film through possible formation of Sr$_{2}$Ti$_{6}$O$_{13}$ or Sr$_{1}$Ti$_{11}$O$_{20}$ phases
000824450 260__ $$aLondon$$bNature Publishing Group$$c2016
000824450 3367_ $$2DRIVER$$aarticle
000824450 3367_ $$2DataCite$$aOutput Types/Journal article
000824450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480597115_11678
000824450 3367_ $$2BibTeX$$aARTICLE
000824450 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000824450 3367_ $$00$$2EndNote$$aJournal Article
000824450 520__ $$aIdentification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, where the local, along both lateral and vertical directions of thin films, changes in oxygen chemistry has been suggested to be the main RS mechanism. However, there are systems which involve distinctive crystallographic phases as CF; the Magnéli phase in TiO2 is one of the very well-known examples. The current research reports the possible presence of distinctive local conducting phase in atomic layer deposited SrTiO3 RS thin film. The conducting phase was identified through extensive transmission electron microscopy studies, which indicated that oxygen-deficient Sr2Ti6O13 or Sr1Ti11O20 phase was presumably present mainly along the grain boundaries of SrTiO3 after the unipolar set switching in Pt/TiN/SrTiO3/Pt structure. A detailed electrical characterization revealed that the samples showed typical bipolar and complementary RS after the memory cell was unipolar reset.
000824450 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000824450 588__ $$aDataset connected to CrossRef
000824450 7001_ $$0P:(DE-HGF)0$$aYoo, Sijung$$b1
000824450 7001_ $$0P:(DE-HGF)0$$aYoon, Kyung Jean$$b2
000824450 7001_ $$0P:(DE-HGF)0$$aYeu, In Won$$b3
000824450 7001_ $$0P:(DE-HGF)0$$aChang, Hye Jung$$b4
000824450 7001_ $$0P:(DE-HGF)0$$aChoi, Jung-Hae$$b5
000824450 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b6
000824450 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7$$ufzj
000824450 7001_ $$0P:(DE-HGF)0$$aHwang, Cheol Seong$$b8$$eCorresponding author
000824450 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep20550$$gVol. 6, p. 20550 -$$p20550 -$$tScientific reports$$v6$$x2045-2322$$y2016
000824450 8564_ $$uhttps://juser.fz-juelich.de/record/824450/files/srep20550.pdf$$yOpenAccess
000824450 8564_ $$uhttps://juser.fz-juelich.de/record/824450/files/srep20550.gif?subformat=icon$$xicon$$yOpenAccess
000824450 8564_ $$uhttps://juser.fz-juelich.de/record/824450/files/srep20550.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000824450 8564_ $$uhttps://juser.fz-juelich.de/record/824450/files/srep20550.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000824450 8564_ $$uhttps://juser.fz-juelich.de/record/824450/files/srep20550.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000824450 8564_ $$uhttps://juser.fz-juelich.de/record/824450/files/srep20550.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000824450 909CO $$ooai:juser.fz-juelich.de:824450$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000824450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b6$$kFZJ
000824450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b7$$kFZJ
000824450 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000824450 9141_ $$y2016
000824450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000824450 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000824450 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000824450 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000824450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000824450 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000824450 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000824450 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000824450 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000824450 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000824450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000824450 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000824450 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000824450 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000824450 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000824450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000824450 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000824450 980__ $$ajournal
000824450 980__ $$aVDB
000824450 980__ $$aUNRESTRICTED
000824450 980__ $$aI:(DE-Juel1)PGI-7-20110106
000824450 9801_ $$aFullTexts