001     824450
005     20210129225039.0
024 7 _ |a 10.1038/srep20550
|2 doi
024 7 _ |a 2128/13094
|2 Handle
024 7 _ |a WOS:000369146300001
|2 WOS
037 _ _ |a FZJ-2016-07039
082 _ _ |a 000
100 1 _ |a Lee, Woongkyu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Resistance switching behavior of atomic layer deposited SrTiO$_{3}$ film through possible formation of Sr$_{2}$Ti$_{6}$O$_{13}$ or Sr$_{1}$Ti$_{11}$O$_{20}$ phases
260 _ _ |a London
|c 2016
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480597115_11678
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Identification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, where the local, along both lateral and vertical directions of thin films, changes in oxygen chemistry has been suggested to be the main RS mechanism. However, there are systems which involve distinctive crystallographic phases as CF; the Magnéli phase in TiO2 is one of the very well-known examples. The current research reports the possible presence of distinctive local conducting phase in atomic layer deposited SrTiO3 RS thin film. The conducting phase was identified through extensive transmission electron microscopy studies, which indicated that oxygen-deficient Sr2Ti6O13 or Sr1Ti11O20 phase was presumably present mainly along the grain boundaries of SrTiO3 after the unipolar set switching in Pt/TiN/SrTiO3/Pt structure. A detailed electrical characterization revealed that the samples showed typical bipolar and complementary RS after the memory cell was unipolar reset.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yoo, Sijung
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yoon, Kyung Jean
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yeu, In Won
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chang, Hye Jung
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Choi, Jung-Hae
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 6
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 7
|u fzj
700 1 _ |a Hwang, Cheol Seong
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1038/srep20550
|g Vol. 6, p. 20550 -
|0 PERI:(DE-600)2615211-3
|p 20550 -
|t Scientific reports
|v 6
|y 2016
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/824450/files/srep20550.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/824450/files/srep20550.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/824450/files/srep20550.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/824450/files/srep20550.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/824450/files/srep20550.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/824450/files/srep20550.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:824450
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21