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Abstract Limited knowledge about the spatial distribution of aquifer properties typically constrains our
ability to predict subsurface flow and transport. Here we investigate the value of using high resolution full-
waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By
stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a
decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along
cross sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial
distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic
conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classifi-
cation is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of
individual facies show some overlap and the absolute hydraulic conductivities from the different methods
(direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the
GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer
experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few deci-
meters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR
ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion
is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.

1. Introduction

Predicting subsurface flow and transport is challenging due to the complex heterogeneity found in most
geologic media. While it has been shown that flow processes can be reasonably well described using spa-
tially averaged (or upscaled) properties, which are easily available from classical hydrogeological methods
(e.g., pumping test), this approach fails for the description of transport processes, which inherently depend
on the distribution of local properties [Dagan, 1989]. Because the detailed spatial characterization of aqui-
fers is unfeasible using classical hydrogeological methods, novel techniques are needed that are able to
characterize aquifers with higher spatial resolution.

Recent advances in geophysical measurement and inversion techniques allow imaging the subsurface with
unprecedented resolution and coverage [Binley et al., 2015]. A particularly promising method with regard to
the detailed characterization of porous aquifers is full-waveform inversion of cross-borehole GPR data [Ernst
et al, 2007; Klotzsche et al., 2014; Gueting et al., 2015]. This method uses a transmitting and a receiving
antenna which are placed in two adjacent boreholes, several meters apart from each other. The transmitting
antenna emits an electromagnetic wave which propagates through the subsurface and is detected by the
receiving antenna. If the wave encounters contrasting electrical properties in the subsurface, it will be
reflected, refracted or scattered [Davis and Annan, 1989]. The waveform that arrives at the receiving antenna
thus contains information about the medium the wave has passed. By repeating the measurement for mul-
tiple transmitter-receiver configurations, and inverting the measured data, two-dimensional tomograms of
the subsurface electrical properties (dielectric permittivity and electrical conductivity) can be obtained.
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Because the attenuation of GPR waves depends on electrical conductivity [Davis and Annan, 1989], GPR per-
formance is optimal for settings where the subsurface electrical conductivity is relatively low, such as coarse
grained porous aquifers with low groundwater salinity. If significantly higher electrical conductivities are
encountered (due to clay-rich sediments or high groundwater salinity), the use of GPR for subsurface char-
acterization may be limited because of strong signal attenuation.

Traditional inversion of crosshole GPR data focuses on the reconstruction of first arrival times, and ray-
based forward simulators are used to approximate the propagation of radar waves in the ground [e.g., Hol-
liger et al., 2001]. Ray-based models, however, strongly simplify the propagation of electromagnetic waves,
which can lead to biased inversion results [Linde and Vrugt, 2013]. In addition, first arrival times constitute
only a small portion of the information contained in the measured waveforms. Recently, full-waveform
inversion approaches, which are commonly used in seismic inversion, have been introduced to crosshole
GPR inversion [Ernst et al., 2007; Meles et al., 2010]. Full-waveform inversion aims at reconstructing not only
first arrival times but entire waveforms, and employs a numerical solution of Maxwell’s equations to more
accurately simulate the electromagnetic wave propagation. As a consequence, this approach exploits more
accurately the information contained in the GPR data and allows characterizing the subsurface with a con-
siderably improved spatial resolution [Belina et al., 2009; Yang et al., 2013; Klotzsche et al., 2013, 2014; Guet-
ing et al., 2015; van der Kruk et al., 2015].

Although the potential benefit of utilizing high resolution geophysical data for hydrogeological site charac-
terization has been demonstrated [e.g., Scheibe and Chien, 2003; Linde et al., 2006; Dafflon et al., 2011], its
routine application is hindered by the lack of direct and universal relationships between geophysical and
hydrogeological properties. Even though strong and linear relationships seem to exist at some sites, which
has motivated direct estimation of hydraulic conductivity from e.g., seismic slowness [Hyndman et al., 2000]
or from radar velocity [Hubbard et al., 2001; Linde et al., 2008], relationships at other sites are essentially
unknown and may or may not exist [Binley et al., 2015].

Rather than relying on explicit petrophysical relationships, other studies have instead exploited the geomet-
rical information obtained from geophysical data [Hyndman and Gorelick, 1996; Tronicke et al., 2004;
Schmelzbach et al., 2011]. The underlying assumption is that geophysical variations delineate lithological
zonation, which is in turn related to hydrogeological properties. As no explicit petrophysical relationship is
needed, zonation approaches alleviate the difficulty of defining one specific quantitative relationship
required for the direct estimation of hydraulic parameters from geophysical data. Hyndman and Gorelick
[1996] jointly inverted seismic and tracer data to estimate the geometry and hydraulic conductivity of litho-
logical zones. With the approximation that each zone can be represented by a constant hydraulic conduc-
tivity, they obtained a reasonably good match between observed and numerically modeled tracer
breakthrough curves. Wainwright et al. [2014] developed a Bayesian hierarchical approach to jointly invert
multiscale geophysical data sets and used this approach to estimate reactive facies at a contaminated site
by integrating high resolution crosshole and low resolution surface seismic data. In a synthetic study, Linde
et al. [2006] used crosshole GPR data to delineate GPR facies and inverted tracer data to infer pixel-wise
hydraulic conductivities from radar velocity, allowing a different petrophysical relationship between radar
velocity and hydraulic conductivity for each GPR facies. Dogan et al. [2011] and Schmelzbach et al. [2011]
employed surface GPR measurements to define subsurface facies and derived individual hydraulic conduc-
tivity distributions for each facies from colocated direct-push hydraulic conductivity profiles.

In the present study, we follow a conceptually similar approach and employ crosshole GPR to characterize
the heterogeneous architecture of an alluvial aquifer. But in contrast to the aforementioned studies, we ana-
lyze the GPR data by full-waveform inversion, which enables us to image the subsurface with increased spa-
tial resolution. Full-waveform inversion of crosshole GPR data has been applied previously to characterize
alluvial aquifers [Oberrohrmann et al., 2013; Klotzsche et al., 2013, 2014; Gueting et al., 2015], but these stud-
ies considered only relatively small spatial scales (i.e., one or a few crosshole planes). Here we investigate a
considerably larger domain by analyzing a total number of 15 crosshole planes that are connected across
an aquifer volume of 50 m X 25 m X 10 m.

The main contribution of this study, however, lies in the comparison of the GPR results with hydrogeological
data, which provides an excellent basis to assess the actual benefit of GPR full-waveform inversion for
hydrogeological site characterization. Thereto, the GPR results are compared with the tracer breakthrough
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observed in a field experiment and with vertical profiles of porosity and hydraulic conductivity from direct-
push, flowmeter and grain size data.

The remaining paper is arranged as follows: In section 2, we describe measurement and inversion of the
GPR data, and we describe direct-push injection logs and direct-push slug tests which were conducted to
characterize the vertical variations in hydraulic conductivity at selected profiles along the GPR transects.
Because the newly conducted GPR and direct-push measurements are compared with data from previous
studies at this site, we briefly revisit some of the data retrieved in previous studies to facilitate the later com-
parisons. In section 3, we first explore the direct correlation between GPR results, porosity and hydraulic
conductivity using crossplots and linear regression; then we derive a lithological zonation from the GPR
tomograms using logistic regression. The resulting GPR facies are characterized in terms of porosity and
hydraulic conductivity using colocated direct-push, flowmeter and grain size data, and the facies distribu-
tion along the GPR transects is compared with the breakthrough of a tracer observed in a field experiment.
Section 4 summarizes the main findings.

2. Material and Methods

2.1. Study Site

The Krauthausen test site is situated in the Lower Rhine Embayment, approximately halfway between the
cities of Cologne and Aachen. It was set up by the research center Jilich in 1993 with the goal to study the
in-situ distribution of subsurface properties and their link to groundwater flow and solute transport.
A detailed description of the test site and its instrumentation is given by Doring [1997] and Vereecken et al.
[2000]. The test site has an extent of 200 X 50 m with its longitudinal axis approximately aligned to the
regional groundwater flow direction (Figure 1). The site is equipped with 76 observation wells reaching to a
depth of 10-13 m which corresponds to the base of the uppermost aquifer. The aquifer material is
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Figure 1. Map of the Krauthausen test site. For clarity, the close-up (right) shows only those boreholes and cone penetration tests that are
located along the GPR transects.
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composed of alluvial terrace sediments, deposited by the Rur river, a local braided river system, on top of
older Rhine and Maas sediments [Englert, 2003]. The aquifer is characterized by sandy to gravely grain size
with only small amounts of clay. The mean aquifer porosity, based on laboratory analysis of core samples is
26% [Vereecken et al., 2000]. The averaged hydraulic conductivity derived from a large scale pumping test is
3 X 107 m/s [Englert, 2003].

Over the last decades, the Krauthausen site has been intensively investigated using a broad spectrum of
methods, including tracer experiments [Vereecken et al., 2000; Vanderborght and Vereecken, 2001; Kemna
et al, 2002; Muller et al., 2010], flowmeter and pumping tests [Li et al., 2007, 2008], geophysical imaging
methods [Kemna et al., 2002; Muller et al., 2010; Gueting et al., 2015], cone penetration tests [Tillmann et al.,
2008] and laboratory characterization of core samples [Doring, 1997]. These studies have brought together
a rich set of information, which provides excellent conditions to test and validate novel methods.

2.2. Crosshole Ground Penetrating Radar (GPR) Tomography

2.2.1. Data Acquisition

GPR data were acquired along 15 crosshole planes with individual borehole distances from 3 to 12 m (Fig-
ure 1). Crosshole planes with borehole distances smaller than 7 m were measured with 200 MHz antennas,
crosshole planes with borehole distances larger than 7 m were measured with 100 MHz antennas because
the signal detected with 200 MHz antennas was too weak. To obtain sufficient ray coverage at affordable
acquisition times, measurements were carried out in a semi-reciprocal acquisition setup with transmitter
and receiver spacing of 0.5 m and 0.1 m, respectively [Oberrohrmann et al., 2013]. Measurements were con-
ducted from approximately 3 m depth (about 1 m below the groundwater level during the measurements)
down to approximately 10 m depth, depending on the depth of the boreholes. To avoid inversion artifacts
due to imprecisely known transmitter and receiver positions [Linde et al., 2006], borehole deviations from
the vertical were accurately determined by deviation log, prior to the GPR measurements.

2.2.2. Full-Waveform Inversion (FWI)

A full-waveform inversion approach was applied to infer the relative dielectric permittivity, ¢, and the electri-
cal conductivity, o, from the measured GPR data. A brief description of the inversion scheme is given below,
for a more detailed description of the inversion procedure and its implementation the reader is referred to
Meles et al. [2010] and Klotzsche et al. [2010].

We used the inversion scheme introduced by Ernst et al. [2007] and modified by Meles et al. [2010]. This
approach employs a conjugate gradient method to iteratively minimize the misfit between observed and
model-predicted radar traces, the latter being generated by a forward model based on a 2-D finite differ-
ence time domain (FDTD) solution of Maxwell’s equations. After each iteration, the parametrization of the
forward model (i.e., the spatial distribution of ¢ and o) is updated using local gradients derived from a cross-
correlation of the back-propagated residual wavefield and the model-predicted wavefield [Meles et al.,
2010]. To avoid overfitting, the inversion is stopped when the root-mean squared (RMS) error between
observed and model-predicted radar traces changes less than 1% from one iteration to the next.

An important requirement for the full-waveform inversion are adequate starting models for € and ¢. In par-
ticular, the € starting model is of critical importance because proper convergence of the full-waveform
inversion requires that for each transmitter-receiver combination the initial offset between observed and
modeled wavefield is not greater than half the dominant wavelength, otherwise the inversion will converge
to a local minimum [Klotzsche et al., 2014]. To derive adequate ¢ starting models, we conducted a ray-based
traveltime inversion [Holliger et al., 2001] for each crosshole plane, and used the result of the ray-based
inversion as starting model for the full-waveform inversion. For g, we used one homogenous starting model
(6 =13 mS/m) for all crosshole planes. In principle, individual ¢ starting models for each crosshole plane
could be obtained from ray-based amplitude inversion [Maurer and Musil, 2004]. However, we found the
ray-based o models obtained for a series of adjacent crosshole planes to show large discrepancies in abso-
lute values, which is unlikely for adjacent planes measured on consecutive days on the same site. In fact, it
has been shown that the estimation of ¢ using ray-based methods is not always straight-forward and, in
particular, absolute o-values can be biased [Holliger et al., 2001; Maurer and Musil, 2004]. We therefore took
a different approach and tested, for a few crosshole planes, the convergence of the full-waveform inversion
for a broad range of homogeneous ¢ starting models. The model which showed the best convergence was
selected as starting model and used for all crosshole planes.
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To minimize inversion artifacts in the vicinity of the boreholes, we adopted the approach by Kurzmann et al.
[2013] and implemented a gradient preconditioner that reduces the high sensitivity of the inversion close
to transmitter and receiver positions. Details on the implementation are given in van der Kruk et al. [2015].

2.3. Complex Refractive Index Model (CRIM)

Petrophysical models can be applied to translate the electrical properties obtained from GPR into hydrologi-
cally more relevant properties such as soil moisture or porosity. Among the various empirical, semi-
empirical and theoretical models that have been proposed in the literature [e.g., Topp et al., 1980; Dobson
et al., 1985; Steelman and Endres, 2011], we opted for the CRIM relationship [Birchak et al., 1974], which is
based on the intuitive idea that the bulk dielectric permittivity, ¢, of an n-phase medium can be expressed
as the sum of the dielectric permittivities of the individual phases, ¢;, weighted by their volume fraction, V;

n
eZ=Z Vie?. (1)
i=1

The exponent o describes the spatial arrangement of the individual phases and takes a value of 0.5 for an
isotropic phase arrangement [Birchak et al., 1974]. Although the CRIM does not account for the full complex-
ity of natural porous media [Dobson et al., 1985; Brovelli and Cassiani, 2008], the CRIM has been found to
yield robust porosity estimates for various types of sediments [Roth et al., 1990]. For a two-phase fully satu-
rated porous medium with isotropic phase arrangement, equation (1) can be written as

_VaTVe )
by =t 2)

where ¢ is the porosity, ¢, is the bulk dielectric permittivity (obtained e.g., from GPR), and ¢; and ¢ are the
dielectric permittivities of the solid grain matrix and of the pore fluid, respectively.

2.4. Logistic Regression

Just like linear regression, logistic regression investigates the dependency between a response variable and
one or more explanatory variables. But while linear regression applies to continuous response variables,
logistic regression applies to binary or multinomial response variables. Given this difference, logistic regres-
sion may be able to identify relations between variables when linear regression does not. For example,
Tesoriero et al. [1998] showed that, while it was not feasible to use linear regression to predict quantitative
values for nitrate concentrations in groundwater from well depth data, it was still possible to use logistic
regression to predict the probability of the concentration exceeding a critical threshold.

A brief description of the principle of logistic regression is given below, detailed discussions can be found
in Hosmer and Lemeshow [2000] or in Helsel and Hirsch [2002]. In the field of geosciences, logistic regression
has been used to predict landslide susceptibility on the basis of geomorphological parameters [Ayalew and
Yamagishi, 2005; van den Eeckhaut et al., 2006], and groundwater vulnerability on the basis of land use data
[Eckhardt and Stackelberg, 1995; Nolan, 2001]. The basic assumption of logistic regression is that the logit of
the probability of an observation being in a response category can be modeled using a linear combination
of explanatory variables

logit(t)=In (17;) =Bo+ X, 3)

where 1 is the probability, X is the vector of explanatory variables, and fi; and f3 are the intercept and the
vector of regression coefficients, respectively. For a multinomial response function with k categories and n
explanatory variables, equation (3) becomes a set of k—1 equations

T .
In (i)zﬁjo+ﬁj1x1+ﬁj2x2+"’+ﬁinX”7 j=1,... k=1, (4)

where 1;/7, represents the relative probability of belonging to category j versus belonging to the reference
category k (here by definition the last category). The regression coefficients  can be determined using
maximum likelihood estimation [Helsel and Hirsch, 2002]. Once f is determined, the probabilities of an
observation belonging to each category can be calculated
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The individual model components (explanatory variables) can be tested for statistical significance using t-
statistics, which are obtained by dividing each component of f§ by its standard error. To identify the ‘best’
model among a set of models with different (combinations of) explanatory variables, Akaike’s Information
Criterion (AIC) can be applied [Helsel and Hirsch, 2002]. The AIC calculates as AIC = 2p- 2L, with p the num-
ber of estimated model parameters and L the log-likelihood of the fitted model [Akaike, 1974]. Among a set
of different models, the model that minimizes the AIC is the preferred model. The AIC, thus, rewards a high
likelihood and penalizes a high number of model parameters.

In the present study, we applied a logistic regression of GPR results (explanatory variables) and lithological
facies derived from grain size data (response categories). GPR and grain size data were available at colo-
cated locations along 3 boreholes. The basic idea is to use the colocated data to derive an empirical rela-
tionship (i.e., the fitted logistic regression model), and utilize this relationship to predict the distribution of
grain size facies at locations where no grain size data exist, solely on the basis of GPR. The following work-
flow was applied: prior to the logistic regression, the grain size data were classified into lithological facies
using simple k-means clustering [MacQueen, 1967]. The idea behind this is to transform the multivariate
grain size data into a categorical variable, which can be used in logistic regression. The logistic regression
was conducted using the clustered grain size data as categorical response variable and the bivariate GPR
results (dielectric permittivity and electrical conductivity) as explanatory variables. Maximum likelihood esti-
mates for f§ were obtained using an iteratively weighted least squares algorithm. With 5 determined, equa-
tions (5) and (6) were applied to calculate, for each GPR pixel, the probability to belong to each grain size
facies.

To evaluate the benefit of GPR full-waveform inversion instead of classical GPR ray-based inversion, we
compared the outcome of the logistic regression conducted with the full-waveform inversion results, and
with the ray-based inversion results as explanatory variables.

2.5. Direct-Push Hydraulic Measurements

2.5.1. Direct-Push Injection Log (DPIL)

The DPIL method [Dietrich et al., 2008] allows to assess local variations in hydraulic conductivity. The meth-
od consists of advancing a small diameter direct-push rod, equipped with a filter screen, into the subsur-
face. At selected depths, the pushing is stopped, water is injected through the screen, and the injection
flow rate and the injection pressure are recorded. The ratio of injection rate and pressure, corrected for
head loss in the tube, gives a proxy, Kppy, for the aquifer’s local hydraulic conductivity [Dietrich et al., 2008].
Through calibration with absolute hydraulic conductivity data from direct-push slug tests (or any other
method), Kpp. can subsequently be converted into absolute hydraulic conductivities [Dietrich et al., 2008;
Lessoff et al., 2010; Dietze and Dietrich, 2012]. At Krauthausen, DPIL profiles were measured at 9 locations
(Figure 1). Since the focus is on a comparison with the GPR results, the DPIL measurements were conducted
at locations where crosshole GPR results were available. DPIL measurements were conducted from 3 to 9 m
depth with a vertical sampling interval of 20 cm. At each depth, 3 repeat measurements with different flow
rates were conducted for quality control (e.g., to identify potential effects caused by opening of preferential
flowpaths due to the water injection or water flow along the probing rods). During the advancement of the
DPIL probe from one sampling depth to the next, water was continuously injected in order to prevent clog-
ging of the screen.

2.5.2. Direct-Push Slug Test (DPST)

In order to obtain absolute values of hydraulic conductivity, multilevel DPST [Butler et al., 2002] were per-
formed at 3 profile locations (Figure 1). Because of the multitude of repeat measurements at each measure-
ment interval that were performed for quality control [see Butler, 1997], the DPST measurements were
relatively time consuming. Therefore, only 2 or 3 depth intervals were tested in each profile, resulting in a
total number of 7 individual DPST. To enable calibration of the DPIL data, the DPST were carried out in close
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proximity (30 cm lateral distance) to DPIL locations; and depth intervals with fairly constant DPIL ratios were
selected. Slug tests were performed in temporarily installed direct-push monitoring wells with a screen
length of 1 m. During well installation, the screen was protected inside the rods to prevent clogging of the
screen. At the selected depths, the screen was exposed and water was pumped until the pumped water
was free of fines. The slug tests were initiated pneumatically [Butler et al., 2002], by pressurizing the air col-
umn above the water to create the initial head displacement and rapidly depressurizing the air column to
initiate the tests. The recorded water table responses were analyzed using the approach of Butler et al.
[2003], which is based on matching aquifer response type-curves to the measured head recovery. The
obtained absolute hydraulic conductivities, Kppst, Were subsequently used as calibration data to translate
the relative DPIL ratios, Kppy., into absolute hydraulic conductivities.

2.6. Previous Studies at the Krauthausen Site
To facilitate the later comparisons, we briefly revisit some of the data from previous studies that will be
compared with the newly conducted crosshole GPR and direct-push hydraulic measurements.
2.6.1. Cone Penetration Tests (CPT)
More than 70 cone penetration tests have been conducted at Krauthausen and are described in detail by
Tillmann et al. [2008]. At each CPT location, measurements of cone resistance and electrical resistivity were
recorded while the CPT probe was continuously pushed into the ground. Subsequently, additional measure-
ments of natural gamma, gamma-gamma and neutron activity were conducted. By calibration, gamma-
gamma and neutron log were related to bulk density and water content, respectively [Tillmann et al., 2008].
Recently, Gueting et al. [2015] reviewed this calibration by comparing the water contents derived from CPT
neutron log with the saturated porosity of core samples determined in the laboratory. They found that the
CPT water contents overestimated the laboratory measurements by a constant value and applied a simple
constant-shift correction to compensate for the overestimation. In the present study, we used the corrected
CPT water contents, the electrical resistivity and the mechanic cone resistance for comparison with the GPR
results. We focus only on those CPT that are located close to the GPR transects; the locations and ID num-
bers of the CPT considered in the present study are shown in Figure 1.
2.6.2. Hydraulic Conductivity From Flowmeter and Grain Size
Previous studies at Krauthausen determined local variations in hydraulic conductivity from flowmeter meas-
urements and grain size [Vereecken et al., 2000; Li et al., 2008; Tillmann et al., 2008]. The flowmeter method
consists of measuring, as function of depth, the vertical flow in a screened well subject to a constant pump-
ing rate. From the increase in cumulative flow rate, AQ;, along some depth interval, z, the hydraulic conduc-
tivity, K;, of that interval can be estimated [Molz et al., 1989]

Ki= %gk ; 7)
where Q is the total pumping rate, b is the screened thickness of the aquifer and K is the depth-averaged
hydraulic conductivity obtained from a pumping test carried out in the same well.

Grain size based estimation of hydraulic conductivity is an indirect method (i.e.,, no flow process is mea-
sured) that relies on empirical or semi-empirical relationships between hydraulic conductivity and grain size
distribution. Various relationships have been proposed in the literature [see e.g., Vienken and Dietrich, 2011].
In the present study, we follow Tillmann et al. [2008], who employed the empirical formula of Bialas and
Kleczkowski [1970] to derive hydraulic conductivity estimates for the Krauthausen sediments and found the
obtained estimates to be of the same order of magnitude compared with the hydraulic conductivity derived
from a pumping test. The Bialas and Kleczkowski [1970] formula is given by

K=0.0036 d%}, 8)

with K the hydraulic conductivity in (m/s) and d,, the 20th percentile of the sediment particle size in (mm).
Due to the empirical nature of this relationship the units are not balanced in equation (8).

2.6.3. Tracer Experiments

Two consecutive tracer tests were carried out in the years 2002 and 2003 at the Krauthausen site [Miiller
et al, 2010]. In both experiments, tracer was injected into borehole B22 and tracer breakthrough was moni-
tored along two downgradient detection planes using time-lapse electrical resistivity tomography (ERT) and
multilevel groundwater samplers. The overall setup is shown in Figure 1. ERT electrodes were installed in
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Figure 2. ERT observed tracer plume splitting (modified from Mdiller et al. [2010]). Colorbars refer to changes in bulk resistivity (left) and
bulk electrical conductivity (right), related to the breakthrough of a resistive (negative) and a conductive (positive) tracer. Tracer plumes
are outlined by the red dashed and solid lines. Vertical bars show results from multilevel groundwater samplers.

boreholes B41, B26, B61 and B25 (first ERT transect), and in boreholes B48, B32, B31 and B62 (second ERT
transect). Additional electrodes were placed at the surface [Miiller et al., 2010]. In the first experiment, a ‘pos-
itive’ tracer with a higher electrical conductivity than the ambient groundwater was applied. In the second
experiment, a ‘negative’ tracer with a lower electrical conductivity than the ambient groundwater was
applied. The idea behind this was that if the two experiments yield consistent results, density effects related
to the tracer application can be neglected. A consistent observation in both experiments was a splitting of
the tracer plume in the first ERT transect (Figure 2, top). This splitting was also observed in the second ERT
transect for the positive tracer experiment, but not for the negative tracer experiment (Figure 2, bottom).
The reason why the negative tracer experiment did not show a plume splitting in the second ERT transect
could be a smaller signal-to-noise ratio in the negative tracer experiment which possibly inhibited seeing
detailed breakthrough patterns in the ERT images. For a detailed discussion of the results, the reader is
referred to Muller et al. [2010].

In the present study, we compared the ERT observed tracer breakthrough with crosshole GPR data acquired
along the same transects, in order to evaluate if the GPR tomograms give evidence about subsurface struc-
tures that caused the splitting of the tracer plume. Moreover, we derived estimates of hydraulic conductivity
from the tracer arrival times in order to compare them with the hydraulic conductivity derived from direct-
push, flowmeter and grain size data. Thereto, hydraulic conductivity estimates were derived from tracer
velocities

vn
K=—, 9)

i
with v the pixel-wise equivalent (streamtube) tracer velocities, that were determined by Miiller et al. [2010]
by fitting the solution of the 1D convection-dispersion equation to locally measured breakthrough curves
(i.e., to the tracer breakthrough detected within a pixel of the ERT cross sections). n and i are the aquifer

porosity and the hydraulic gradient, respectively.
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3. Results and Discussion

3.1. GPR Full-Waveform Inversion Results

A full-waveform inversion was applied to infer the subsurface dielectric permittivity and electrical conduc-
tivity for a total number of 15 individual GPR crosshole planes. Depending on the depths of the boreholes,
a single crosshole data set comprised approximately 1500-2000 individual radar traces. Each crosshole data
set was inverted separately, i.e., independent from adjacent crosshole planes. A grid cell size of 3 cm X
3 cm was used for the forward modeling to ensure numerical accuracy [Holliger and Bergmann, 2002]. For
the inversion, 9 forward modeling cells (3 X 3) were combined into one inversion cell [Ernst et al., 2007].
Convergence of the full-waveform inversion was typically reached after 15-20 iterations. For each crosshole
plane the full-waveform inversion lead to a reduction of the initial RMS misfit (obtained with the ray-based
permittivity starting model and the uniform conductivity starting model) by about 50-70%.

Figure 3 shows a 3-D plot of the full-waveform inversion results for all crosshole planes. Close-ups of ray-
based and full-waveform dielectric permittivity along the main 2-D transects are shown in Figure 4. Com-
pared with the ray-based results the full-waveform tomograms contain spatial structures at greater detail.
This is most notable in the longitudinal transect (Figures 4a and 4b), where the full-waveform inversion
identifies several thin layers with high permittivity, that are not resolved by ray-based inversion.

An important finding is that the tomograms in Figures 3 and 4 show relatively consistent spatial structures
across boreholes, which indicates robust inversion results. For some boreholes, however, the tomograms
left and right of the boreholes depart and/or the spatial structures in the tomograms can be observed to
“fade out” close to the boreholes. This effect can most clearly be seen in Figure 4 along the boreholes B62,
B61 and B38, both for ray-based and full-waveform inversion results. In the following, we will briefly discuss
potential causes for these inconsistencies as well as possible strategies against it. In fact, inversion artifacts
close to boreholes are an issue commonly encountered in crosshole GPR (and seismic) tomography [e.g.,
Maurer and Green, 1997; Becht et al., 2004; Irving et al., 2007]. A well-known source of such artifacts are
imprecisely known transmitter and receiver positions within the boreholes [Linde et al., 2006]. Therefore, it

Electrical
conductivity
(mS/m)

Figure 3. 3-D plot of (left) dielectric permittivity and (right) electrical conductivity derived from full-waveform inversion of crosshole GPR data. Black vertical lines represent boreholes.
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Figure 4. Comparison of (a, c) ray-based and (b, d) FWI-derived dielectric permittivity along the two main transects (from borehole B07 to B22 and from B48 to B30; see Figure 1 for

reference).

is common practice to perform borehole deviation log measurements prior to the crosshole measurements
[e.g., Doetsch et al.,, 2010; Dafflon et al., 2011]. This is also what was done in the present study. However,
Maurer and Green [1997] noted that measured borehole deviations can be flawed, and demonstrated that
relatively minor coordinate errors can produce considerable inversion artifacts. As a strategy to account for
potential errors in the measured coordinates they proposed to treat transmitter and receiver coordinates as
uncertain and include them as additional inversion parameters. Applied to seismic data from the Grimsel
site their approach was able to strongly reduce the inconsistencies between two adjacent tomograms.

Dafflon et al. [2011] analyzed radar traveltimes from a total number of 31 crosshole planes at the Boise
Hydrogeophysical Research Site and showed that the consistency of intersecting tomograms could be
greatly improved by simultaneously inverting all crosshole data sets together instead of separately. Unfortu-
nately, they also observed that by inverting all data sets jointly, a significantly smoother subsurface model
was obtained (i.e., a model containing less details) than when each data set was inverted separately. As our
primary goal is to image subsurface structures with the highest possible resolution we decided to invert
each crosshole data set separately. An unwanted side effect of that might be that the obtained tomograms
are not completely consistent with each other.

It should also be mentioned that the drilling of the boreholes may have locally disturbed the soil structure.
In that case, discontinuities in the GPR tomograms would reflect actual zones of disturbance rather than
inversion artifacts.
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3.2. Comparison of GPR Full-Waveform Inversion Results With CPT Neutron

and Electrical Resistivity Logs

As several CPT profiles are located in close proximity to the GPR transects (Figure 1), they provide an oppor-
tunity to validate the GPR results. It should be noted, however, that also the CPT profiles are not expected
to be flawless, and thus, discrepancies between GPR and CPT could result from errors in either or both tech-
niques. In the following, we compare the porosity from CPT neutron logs with porosity estimates derived
from GPR; and we compare the electrical conductivity from CPT resistivity logs with the electrical conductiv-
ity derived from GPR. Altogether, 17 CPT porosity profiles and 9 CPT electrical conductivity profiles were
available at locations colocated with the GPR transects. To obtain porosity estimates from GPR, the CRIM
relation (equation (2)) was applied with ¢ = 84, which represents the dielectric permittivity of water at
10°C [Eisenberg and Kauzmann, 1969], and with ¢; = 4.5, which represents the dielectric permittivity of
quartz [Carmichael, 1982], i.e., no fitting was performed. Figure 5a shows a comparison of CPT- and
GPR-derived porosity along CPT profile 141. Overall, the porosity from CPT and GPR shows a strong cor-
relation. Compared with the ray-based inversion results the full-waveform inversion improves the recon-
struction of small scale structures, such as the high porosity layer at about 4 m depth. The ray-based
results give a good estimate of the basic trends in porosity, though.

Crossplots of CPT porosity versus GPR FWI porosity along all CPT profiles are shown in Figures 6a-6c¢. Note
that the data from crosshole planes measured with different GPR antenna frequencies are plotted both sep-
arately (Figures 6a and 6b) and combined (Figure 6¢). As expected, the agreement between GPR and CPT is
better (higher correlation coefficient, regression line closer to the 1:1 line) for the GPR data acquired with
the 200 MHz antennas (Figure 6a), than for the GPR data acquired with the 100 MHz antennas (Figure 6b).
This can be attributed to the higher spatial resolution that can be obtained from shorter wavelengths.

Figures 6d-6f show crossplots of electrical conductivity from CPT and GPR FWI. Although the correlation is
not as strong as it is for the porosity, GPR and CPT results still correlate fairly well. For the electrical conduc-
tivity data, a better correlation of the 200 MHz data compared to the 100 MHz data cannot be recognized,
but this could also be due to the limited amount of data (due to technical problems during the CPT survey,
the electrical conductivity was measured only at approximately every second CPT profile). Generally, it can
be observed that the majority of data points plot above the 1:1 line in Figures 6d-6f, which indicates that
the electrical conductivity obtained from GPR is slightly higher than the electrical conductivity obtained
from CPT. Figure 5b shows a comparison of CPT and GPR-derived electrical conductivity along CPT profile
135. Along this profile the CPT and GPR results can additionally be compared with the ERT results from

Miiller et al. [2010]. Overall, the three

a) CPT 141 b) — CPT 135 different methods identify fairly simi-
---- GPR (ray-based) ---- ERT | ds. H bl
— GPR (FWI) — GPR (FWI) ar trends. However, some notable

differences exist, particularly in the

3 lower part of the profile. It is very
interesting to see how the small scale
41 variability is most pronounced in the
CPT profile, less pronounced in the
_9f GPR profile, and virtually absent in
E the ERT profile, which highlights the
";i) 6 differences in spatial resolution of the
a individual methods.
4 3.3. Comparison of GPR Full-
Waveform Inversion Results With
87 Direct-Push Hydraulic Conductivity
' Prior to comparing the direct-push
%-1 02 03 o4 90 : " 20 derived hydraulic conductivity with
Porosity (-) Electrical conductivity (mS/m) the GPR full-waveform inversion
results, we converted the relative Kppy.
Figure 5. (a) CPT porosity profile and comparison with colocated porosity estimat- values into absolute hydraulic conduc-

ed from GPR ray-based inversion and from GPR full-waveform inversion. (b) CPT .. . he few K | |
electrical conductivity profile and comparison with colocated electrical conductivity tivity using the tew Kppst values as cal-
estimated from ERT and from GPR full-waveform inversion. ibration data. Following Dietrich et al.
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Figure 6. (a—c) Crossplots of porosity from CPT and GPR FWI; (d-f) Crossplots of electrical conductivity from CPT and GPR FWI. Data from crosshole planes measured with different GPR
antenna frequencies are plotted separately and combined (a, d) 200 MHz; (b, €) 100 MHz, (c, f) together). n is the number of data points.

[2008], we conducted a linear regression of colocated log Kpp;. and log Kppst values and used the obtained
regression equation to translate Kppy values into hydraulic conductivity (Figure 7). Because the DPST were
conducted with a filter screen length of 1 m, and the DPIL were measured with a vertical sampling interval of
20 cm, there are five DPIL measurements colocated with each DPST measurement. Assuming horizontal layer-
ing, we calculated an averaged (or upscaled) Kpp_ value for each DPST interval, by taking the arithmetic mean
of the five associated Kpp). values. The regression was conducted with the arithmetic means of the Kppy values
and the corresponding Kppst values. The high correlation coefficient of 0.92 suggests that the regression equa-
tion allows robust estimation of absolute hydraulic conductivity from Kpp,.

The absolute hydraulic conductivity derived from DPIL and DPST were used to investigate if a correlation exists
between hydraulic conductivity and GPR attributes. Figure 8 shows vertical profiles of hydraulic conductivity and
GPR FWI results along DPIL profiles 2 and 5. Scatterplots of hydraulic conductivity (entire DPIL and DPST data set)
versus GPR attributes are presented in Figures 9a and 9b. The scatterplots were constructed by averaging the val-
ues from GPR cells located along the DPST and the DPIL depth intervals, respectively. To reduce noise, a three-
point moving average was applied to the DPIL data. Overall, both GPR attributes show a negative correlation
with hydraulic conductivity (note that in order to make it easier to see the negative correlation in Figure 8 the
log K axis was reversed). The negative correlation is stronger for the (few) DPST hydraulic conductivity estimates
than for the DPIL hydraulic conductivity estimates (Figures 9a and 9b).

Interestingly, the scatterplots for the two GPR attributes versus hydraulic conductivity look quite similar. The
reason for this similarity is probably that the clay content at the Krauthausen site is so small that both the
dielectric permittivity and the electrical conductivity primarily depend on porosity. According to grain size
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10° analyses, the average clay content of the part of the
aquifer covered by GPR measurements is only 2%. If
changes in clay content are minor, the bulk electrical
conductivity of saturated media is controlled by the
electrical conductivity of the pore fluid. Under such
conditions, both the dielectric permittivity and the elec-
trical conductivity obtained from GPR can be expected
to depend mainly on saturated porosity, which is also
reflected in the strong correlation of the two GPR attrib-
utes (Figure 9¢).

Single
® Mean
— Regression

Kopst (M/S)

y = 0.205x - 3.98
corrcoeff = 0.92 It is interesting that our data suggest a negative corre-
10° lation between porosity and hydraulic conductivity,
° 10" 10* 10° 10" 10° although intuitively one would expect a positive rela-
KDPH_ (I/h/bar) tionship. However, several studies showed that the
relation between porosity and hydraulic conductivity
e i n T ol e T i stronaly sitedependent and a conelation between
cient are given at the bottom of the crossplot. the two parameters can be positive, negative or
absent [Nelson, 1994; Hubbard et al., 2001; Morin,
2006]. The reason for this is that the hydraulic conductivity is not a function of the total pore volume
alone but also of the structure, size, tortuosity and connectivity of the individual pores within the pore
network [Koltermann and Gorelick, 1996]. At the Krauthausen site, it appears that the structural features of
the pore network that lead to a higher hydraulic conductivity are negatively correlated to the total pore
volume. According to Tillmann et al. [2008] and Gueting et al. [2015], the Krauthausen aquifer comprises
different lithological facies that are characterized by different average grain sizes (ranging from sand to
gravel). In addition, these facies are characterized by different sorting, namely the sand-dominated facies
is significantly better sorted than the gravel-dominated facies. This leads to a smaller total porosity of the
gravel facies compared to the sand facies. Despite its smaller total porosity, however, we suspect that the
gravel is characterized by (fewer but) larger individual pores which compensate for its smaller total poros-
ity and lead to a higher hydraulic conductivity of the gravel facies compared to the sand facies. We
believe that this is the reason why we observe a negative correlation between hydraulic conductivity and
GPR attributes.

Yet despite this overall negative corre-
lation, the relationship between DPIL-
derived hydraulic conductivity and
GPR results is characterized by consid-
erable scatter (Figures 9a and 9b).
There are several possible explana-
tions for that: (1) The small-scale varia-
tions in DPIL and/or GPR data are
measurement scatter. (2) The GPR and
DPIL estimates are not perfectly colo-
cated so that a combination of a small
spatial shift with large small-scale var-
iations leads to considerable noise on
P the correlation between GPR and DPIL

& estimates. (3) The porosity does not
10 15 20 explain the variations in hydraulic
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Figure 9. Scatterplots of direct-push hydraulic conductivity and GPR FWI attributes.
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In conclusion, the analysis of colocated GPR full-waveform inversion results and direct-push hydraulic
conductivity data suggests that an overall negative correlation exists between porosity and hydraulic
conductivity at the Krauthausen site. As such, this relationship provides the potential to estimate hydrau-
lic conductivity on the basis of GPR attributes which are sensitive to porosity. Indeed the hydraulic con-
ductivity derived from DPST correlates strongly with the GPR attributes. The weak correlation between
the DPIL-derived hydraulic conductivity and the GPR attributes, however, suggests that the use of GPR
to estimate fine scale variations in hydraulic conductivity is limited at the Krauthausen site. Note that
also a multilinear regression approach, using both GPR attributes (or their principal components) simul-
taneously, did not lead to a significantly improved correlation between GPR and DPIL data (not shown
here). In the following, we present an alternative facies-based approach in which the GPR attributes are
not used to directly estimate hydraulic conductivity but instead to distinguish different aquifer units
(facies), whose hydraulic conductivity is derived independently, based on direct-push, flowmeter and
grain size data.

3.4. Facies Classification
Lithological facies were defined on the basis of grain size data, available along 3 boreholes (B7, B22 and
B32). During the drilling of these boreholes, soil samples were collected with a vertical sampling interval of
10 or 20 cm and analyzed for grain size distribution [Vereecken et al., 2000]. Colocated with the GPR data, a
total number of 140 grain size distribution curves are available (Figure 10a).

To extract lithological facies from the ensemble of grain size distribution curves, we applied a simple k-
means cluster analysis [MacQueen, 1967]. In this way, grain size distribution curves that are relatively similar
to each other (i.e., belong to the same facies) are grouped together in clusters. Figures 10b-10d show the
results from clustering the multivariate grain size data (12 sieve fractions for each sediment sample) into
three clusters. The division into three clusters was chosen based on the findings of Doring [1997] and Till-
mann et al. [2008], who analyzed borehole logs and CPT profiles and found that the Krauthausen aquifer
can be broadly divided into three lithological units. A similar finding was reported by Gueting et al. [2015],
who analyzed multivariate GPR and CPT data and showed that both data sets were best represented by a
division into three facies. It should be noted, however, that these facies are not expected to form clearly
separated spatial structures in the Krauthausen aquifer, because sedimentation conditions in alluvial sys-
tems often change gradually [Miall, 1996], which leads to gradual instead of abrupt changes in subsurface
properties (e.g., fining upward sequences). Indeed, it can be observed that the obtained clusters (Figures
10b-10d) represent different subsets of a continuous ensemble rather than clearly separated units. Never-
theless, the facies based approach may be used to represent part of the spatial variability in subsurface
properties since the variability of the grain size distribution within a certain cluster is reduced compared to
the variability of the ensemble of all grain size distribution curves (Figure 10). Table 1 gives characteristic
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properties for each grain size facies. The main differences are reflected in the sand-to-gravel ratio and
sorting.

As described in section 2.4, we conducted a logistic regression of the clustered grain size data (response
variable) and the colocated GPR data (explanatory variables). The results are given in Table 2. Note that we
constructed four different logistic regression models with different sets of explanatory variables. The varia-
bles contained in each model are listed in the second column of Table 2. The first model (“Intercept-Only”)
contains only a constant term, i.e., no GPR data at all. As a consequence, the probabilities derived from this
model are constant, simply corresponding to the relative amounts of the individual facies in the grain size
data. The reason why we included this most basic model is that any improvement due to incorporating GPR
data can be seen by comparison with this basic model. The second model (“Ray-based”) contains, in addi-
tion to a constant term, the GPR dielectric permittivity obtained from ray-based inversion. In the third mod-
el (“FWI (e only)"), the ray-based dielectric permittivity is replaced by the full-waveform dielectric
permittivity. The fourth model (“FWI") contains additionally the electrical conductivity obtained from full-
waveform inversion.

The maximum likelihood coefficient estimates, f3, obtained for each model (Table 2) represent matrices
with as many rows as there are explanatory variables and as many columns as there are categories (not
including the reference category, i.e., facies 3, for which the coefficients are by definition zero). The first
column of 8 thus corresponds to the distinction between facies 1 and facies 3, while the second column
corresponds to the distinction between facies 2 and facies 3 (compare equation (4)). The p-values, com-
puted from the t-statistics of the individual components of f3, suggest that all coefficients are statistically
significant (i.e., p<0.05). The only exception is a p-value of 0.34 for FWI ¢, which suggest that FWI ¢ does
not provide additional significant information to distinguish between facies 2 and 3. But note that FWI ¢
is significant to distinguish between facies 1 and 3 (indicated by p<0.05, one position further left in
Table 2).
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Figure 10. (a) Ensemble of 140 grain size distribution curves. (b—d) Results from k-means clustering.

GUETING ET AL.

HIGH RESOLUTION AQUIFER CHARACTERIZATION 63



@AG U Water Resources Research

10.1002/2016WR019498

The last two columns in Table 2 (GSD and AIC)

Table 1. Characteristic Properties of Grain Size Facies With Standard . .
give global measures that describe how well

Deviations (in Brackets)

Facies Clay (%)  Silt(%6)  Sand (%)  Gravel (%) v the different models explain the clustered grain
1 31(.0) 28013 76(11) 18 (10) 502) size data. Based on these two metrics, the mod-
2 20(05 24015 41(11) 55 (10) 19 (11) els listed in Table 2 get better from top to bot-
3 1405 29(12) 18(7) 78 (8) 60 (35)

tom, the FWI model best explains the grain size
data. As expected, all models that contain GPR
data as explanatory variable perform much bet-
ter than the basic Intercept-Only model. The
improvement using the GPR full-waveform instead of the ray-based inversion results seems only minor. As
we will see later, however, this small improvement is quite important.

2U=deo/d1, the coefficient of uniformity.

3.5. Comparison of GPR Predicted Facies Distribution With CPT Cone Resistance Logs

Figure 11 shows for one GPR transect the facies distribution predicted by the Ray-based, the FWI (e only)
and the FWI logistic regression model. Information about the reliability of the facies classification is included
by scaling the color saturation proportional to the probability of facies assignment predicted by the logistic
regression model (equations (5) and (6)). Full color saturation refers to a probability of 1, zero color satura-
tion refers to a probability of 0.33 (the lowest possible value for three facies).

Overall, the facies distribution obtained from the three different logistic regression models is quite similar
for facies 3, but considerable differences exist regarding the distribution of facies 1 and 2. The GPR pre-
dicted facies distribution can be compared with CPT cone resistance logs (black lines in Figure 11) which
were measured in close proximity to the GPR transect (Figure 1). While the CPT profiles show only very little
correlation with the ray-based predicted facies distribution, they correlate quite well with the FWI predicted
facies distribution: low cone resistance values coincide with the depth intervals occupied by facies 1; inter-
mediate and high cone resistance values coincide with the depth intervals occupied by facies 2 and 3,
respectively. Note that this order is also what we would expect based on the gravel contents of the individ-
ual grain size facies (Table 1).

It is noteworthy that the greatest part of the improvement of the FWI model relative to the ray-based model
is already obtained when using the FWI (e only) model. This shows that the improvement is not only due to
the additional information from electrical conductivity but also due to the higher resolution of the dielectric
permittivity obtained from full-waveform inversion. But including the electrical conductivity improves the
consistency of facies across boreholes B62 and B61 (Figure 11c). This shows that the electrical conductivity
contributes valuable information for facies estimation.

3.6. Comparison of GPR Predicted Facies Distribution With Tracer Breakthrough

Figures 12a and 12b show, respectively, the ray-based and the FWI predicted facies distribution in the part
of the aquifer where the two tracer experiments were conducted. The transects parallel to the x-axis are the
same transects that were monitored with ERT during the tracer tests (section 2.6.3). The red dashed and sol-
id lines show the outlines of the ERT observed tracer breakthrough for the negative and positive tracer
experiment, respectively (compare with Figure 2).

Table 2. Results of the Logistic Regression of GPR and Grain Size Data

Model Variables B t-Statistic p-Value GSD AICS

Intercept-Only Constant 0.68 (0.15) 0.93 (0.14) 4.56 6.52 <0.05 <0.05 46% 780

Ray-based Constant —23.17 (2.29) —9.16 (1.42) —10.13 —643 <0.05 <0.05 69% 562
Ray-based ¢ 1.60 (0.15) 0.73 (0.10) 1043 7.02 <0.05 <0.05

FWI (e only) Constant —20.42 (1.98) —8.81(1.43) —10.32 —6.14 <0.05 <0.05 73% 558
FWI e 141 (0.13) 0.70 (0.10) 10.48 6.73 <0.05 <0.05

FWI Constant —19.43 (1.99) —8.75 (1.47) =73 —5.97 <0.05 <0.05 76% 545
FWI e 1.16 (0.15) 0.77 (0.12) 7.60 6.30 <0.05 <0.05
FWI o 0.24 (0.12) —0.10 (0.10) 2.08 —0.96 <0.05 0.34

“Maximum likelihood estimates of regression coefficients and standard errors (in brackets).

bProportion of cells with colocated GPR and grain size data, where the modeled facies classification (i.e., highest probability predicted
by the logistic regression model) matches the observed facies classification (clustered grain size data along boreholes).

“Akaikes Information Criterion (AIC) = 2 p - 2 L, with p the number of model parameters and L the log-likelihood of the fitted model.
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The main difference in Figure 12 between ray-based and FWI results is the distribution of facies 1. Note that
facies 1 is the facies with the finest grain size distribution which can therefore be expected to be less
hydraulically conductive than facies 2 and 3. The ray-based approach shows a thick facies 1 layer between
approximately 5 and 8 m depth which is interrupted at some places by facies 2. The FWI approach, in con-
trast, suggests that this layer is split up between boreholes B62 and B22 into two thinner layers of facies 1,
and that between these two layers, there is a thin facies 2 layer at approximately 5-6 m depth that is lateral-
ly more or less continuous. At the bottom of this facies 2 layer, there is again a thin facies 1 layer found. The
consequence of this facies structure derived from FWI for transport of a tracer that is injected into borehole
B22 is that part of the tracer plume will be transported through the upper continuous facies 2 layer
(between 5 and 6 m depth) whereas the lower facies 1 layer will lead to a split of the tracer plume (indicat-
ed by red arrows in Figure 12). In contrast, the facies structure derived from the ray-based approach would
suggest tracer transport mainly through facies 2 below 7 m depth. This finding suggests that the improve-
ment in resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures which
are highly important for solute transport.

(a) Ray-based
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Figure 11. GPR predicted facies distribution using (a) ray-based dielectric permittivity, (b) full-waveform dielectric permittivity, (c) full-waveform dielectric permittivity and electrical con-
ductivity (see Table 2). Color saturation is proportional to the probability of facies assignment predicted by the logistic regression model. Vertical gaps represent boreholes. Black lines

represent CPT cone resistance logs.
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The correlation between the tracer breakthrough and the FWI predicted facies distribution suggests that
the derived facies are meaningful with regard to flow and transport. In the following, we will test this
hypothesis by investigating the porosity and the hydraulic conductivity of the GPR FWI facies.

3.7. Porosity of GPR Facies

The porosity of the FWI predicted GPR facies was estimated from CPT neutron logs and from GPR dielectric
permittivity (see section 3.2). The porosity of each facies, based on GPR and CPT data, is shown in Figure 13.
Note that the portion of the aquifer sampled by GPR and CPT is different, because CPT porosity is available
along 17 vertical profiles, whereas GPR porosity is available for each and every GPR pixel. Nevertheless, the
porosity estimates from GPR and CPT are relatively consistent. Both methods suggest that the porosity
decreases from facies 1, to facies 2, to facies 3, and that the porosity distribution of each facies is distinct
(i.e., different from the porosity distribution of the other two facies).

3.8. Hydraulic Conductivity of GPR Facies

The hydraulic conductivity of the FWI predicted GPR facies was estimated from the DPST and DPIL profiles;
and from flowmeter (equation (7)) and grain size data (equation (8)). Colocated with the GPR transects, flow-
meter data were available along boreholes B22, B26, B31 and B32; and grain size data were available along
boreholes B7, B22 and B32. Unfortunately, there were no flowmeter data available at locations colocated
with facies 3, because the flowmeter measurements were conducted only below approximately 4 m depth,
and facies 3 occurs mainly above 4 m depth (Figure 12).

Figure 14 shows the hydraulic conductivity of each facies according to DPST, DPIL, flowmeter and grain
size. Overall, it can be noted that the different methods show a fairly similar trend, i.e., an increase in
hydraulic conductivity from facies 1, to facies 2, to facies 3. This suggests that the GPR-derived facies are
meaningful with regard to hydraulic conductivity, although the overlap of the hydraulic conductivity distri-
butions for individual facies indicates that the GPR facies are not as well constrained by hydraulic conductiv-
ity as they are by porosity (section 3.7).

Interestingly, the highest hydraulic conductivity is obtained for facies 3, although no tracer breakthrough
was observed above 4 m depth, where facies 3 primarily occurs (Figure 12b). This is most likely a conse-
quence of the tracer injection into borehole B22, which is equipped with a filter screen ranging from 2.9 to
10.9 m depth. As facies 3 seems to occur only at the very top of the screened interval (the uppermost GPR
pixels in Figure 12 correspond to a depth of 2.86 m depth), it can be expected that the amount of tracer
injected into this uppermost layer was only small, which explains that no tracer mass was detected in this
layer farther downstream.

The lowest hydraulic conductivity is obtained for facies 1, which is in agreement with the hypothesis that
the facies 1 layer caused the splitting of the tracer plume (section 3.6). It is intriguing, however, that the dis-
tinction of facies 1 and 2 (the two transport relevant facies) is not very clear when looking at their hydraulic
conductivity distributions which overlap (in particular the DPIL-derived distributions). Nevertheless, the dif-
ference in the average properties of the two facies was apparently large enough to have an important
impact on transport in the aquifer because the tracer tests do show a clear and consistent effect of the
facies structure on the observed tracer transport. This indicates that the structure and especially the connec-
tivity of the facies is important even though the measured variability of local hydraulic properties within a
facies is large.

Although the hydraulic conductivity derived from direct-push, flowmeter and grain size data agree fairly
well regarding the trend, they show quite some disagreement regarding the absolute values (note the dif-
ferent x-axes in Figure 14). In order to evaluate which method best explains the observed tracer arrival
times, we derived hydraulic conductivity estimates from the tracer test data, by applying equation (9) with
i=0.002, the mean hydraulic gradient during the tracer experiments [Miller et al., 2010], and n = 0.25, the
mean porosity of GPR FWI facies 2 (because the tracer breakthrough occurred primarily through facies 2
(Figure 12b)).

Figure 15 shows a comparison of the tracer test-derived hydraulic conductivity and the hydraulic conductiv-
ity of facies 2 according to direct-push, flowmeter and grain size data. It can be seen that in order to explain
the observed tracer arrival times, log hydraulic conductivities of around —3 are required. This is approxi-
mately half an order of magnitude higher than the direct-push derived hydraulic conductivity, and
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Figure 12. Comparison of ERT observed tracer breakthrough and GPR predicted facies distribution using (a) ray-based dielectric permittivi-
ty, (b) full-waveform dielectric permittivity and electrical conductivity. Color saturation is proportional to the probability of facies assign-
ment predicted by the logistic regression model. Red dashed and solid lines show the outlines of the ERT observed tracer plumes
projected on the GPR tomograms (compare with Figure 2).

approximately half an order of magnitude lower than the flowmeter-derived hydraulic conductivity. The
grain size based estimates lie between the direct-push and flowmeter results and show the best agreement
with the tracer test-derived hydraulic conductivity.

The differences in absolute hydraulic conductivities obtained from the different methods may be attributed
to different sensitivities, support volumes and biases of the different measurements techniques. Particularly
at strongly heterogeneous sites, different methods have been reported to give deviating results. For
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Figure 13. Porosity of the FWI predicted GPR facies according to CPT neutron largely varying mean values. Bohling
logs and GPR dielectric permittivity. Horizontal lines represent two times the stan- et al. [2012] compared flowmeter and
dard deviation. direct-push derived hydraulic conduc-

tivity and found that the two methods
identified similar structures in the subsurface, but the direct-push estimates were on average about a factor
5-10 smaller compared with the flowmeter results.

One explanation for lower hydraulic conductivity measured with direct-push is that direct-push tools may
locally compress the subsurface structure and thereby decrease hydraulic conductivity. Another practical
difficulty consists in keeping the injection screen free from clogging because this can be misinterpreted
as a decrease in hydraulic conductivity [Dietrich et al., 2008]. Although it was found that the continuous
injection of water during DPIL tool advancement [Dietrich et al., 2008] and the use of shielded screens for
DPST measurements [Butler et al., 2002] can mitigate or prevent screen clogging, under unfavorable con-
ditions screen clogging may still occur and lead to an underestimation of hydraulic conductivity. Butler
et al. [2002] discussed the implication of well development on DPST results and noted that insufficient
development of the direct-push installed well can lead to significant underestimation of hydraulic con-
ductivity by DPST.

Flowmeter-derived hydraulic conductivities, on the other hand, are well known to be sensitive to skin
effects, filter pack, ambient flow in the well and head losses in well and screen [Rehfeldt et al., 1989; Molz
et al, 1994]. Ruud et al. [1999] demonstrated numerically that the combined effect of flowmeter-induced
hydraulic head losses and cross-flow through the filter pack can easily lead to an overestimation of the true
hydraulic conductivity by a factor 10.

Finally, we want to note that the method-based discrepancy in absolute hydraulic conductivity observed in
the present study (approximately one order of magnitude) appears less dramatic if one considers the enor-
mous variability (several orders of magnitude) of hydraulic conductivity in the subsurface.
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3 X 3
4 4
S 2 X XX S 2 X XX X
Yy &8
1 X X X 1r X X X X
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Figure 14. Hydraulic conductivity of the FWI predicted GPR facies according to direct-push slug test, direct-push injection log, flowmeter
and grain size data (note the different x-axes!). Horizontal lines represent two times the standard deviation.
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Figure 15. Tracer test-derived hydraulic conductivity and comparison with the hydraulic conductivity of GPR FWI facies 2 according to
direct-push slug test, direct-push injection log, flowmeter and grain size data. Horizontal lines represent two times the standard deviation.

4. Conclusions

High resolution tomographic images of the electrical properties of an alluvial aquifer were obtained from
full-waveform inversion of cross-borehole GPR data. By analyzing multiple crosshole planes and stitching
together the tomograms from adjacent planes, we were able to image, with a decimeter scale resolution,
the dielectric permittivity and electrical conductivity along several cross sections up to 50 m in length and
10 m in depth.

Porosity estimates derived from the GPR results using the Complex Refractive Index Model (CRIM) showed a
strong correlation with porosity estimates derived from CPT neutron logs (correlation coefficient of 0.8). A
less pronounced correlation was observed between the GPR results and the hydraulic conductivity from
direct-push injection logs (correlation coefficient of —0.4).

By employing a logistic regression model that relates the electrical properties obtained from GPR to litho-
logical facies obtained from grain size data, we utilized the GPR full-waveform inversion results to predict
the spatial distribution of lithological facies along the GPR transects. Vertical profiles of porosity and hydrau-
lic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies are
meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual
facies show some overlap. The hydraulic conductivity estimates from the different methods (direct-push,
flowmeter, grain size) were found to identify similar trends but deviating absolute values. Taking tracer test-
derived hydraulic conductivity as a reference, the direct-push derived hydraulic conductivities were approxi-
mately half an order of magnitude lower, and the flowmeter-derived hydraulic conductivities were approxi-
mately half an order of magnitude higher. Somewhat surprisingly, the indirect (i.e, purely empirical)
estimation of hydraulic conductivity from grain size data was found to best explain the observed tracer
arrival times.

Comparison of the GPR predicted facies distribution with tracer test data suggests that the plume splitting
observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of
only a few decimeters. Because this sand layer was detected by GPR full-waveform inversion but not by conven-
tional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform
inversion is crucial to detect small-scale aquifer structures that are highly important for solute transport.

We hope that the results presented here will stimulate further applications of GPR full-waveform inversion.
Admittedly, the results from intensively studied test sites, such as the Krauthausen site, must be regarded
as best case scenarios of what information a method can provide. Yet full-waveform inversion of crosshole
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GPR data has been tested under different conditions at several sites now [Klotzsche et al., 2013, 2014; Guet-
ing et al., 2015], and we believe that hydrological site characterization could often benefit from its applica-
tion (provided that the fundamental requirement for any GPR application is fulfilled, i.e., signal attenuation
due to electrical conductivity is not too high).

A particularly interesting application in our view would be to use tomograms from GPR full-waveform inver-
sion as “training images” for multiple-point-statistical (MPS) simulations [e.g., Mariethoz and Caers, 2014]. In
this framework, GPR full-waveform inversion would be used to collect site-specific high resolution informa-
tion about the geological structures that exist at a site; and MPS simulations would be used to stochastically
derive 3-D subsurface models based on the structural information provided by the GPR tomograms. The
resulting models could be parametrized for flow and transport simulations.
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